Abstract

We propose a Fourier modal method (FMM) based through-focus scanning optical microscopy (TSOM) featuring sub-nano scale measurement tolerance. TSOM is very recently conceptualized non-destructive optical metrology technique just at the beginning stage of research. Nowadays the reliability and feasibility of TSOM concept is subject to controversy. We experimentally demonstrate stable nano-scale metrology of the FMM-based TSOM for the verification of the TSOM metrology and provide a numerical tool for true nano-meter scale TSOM through devising the FMM based TSOM scheme. By considering the illumination light parameters of incidence angle, polarization, degree of coherence, illumination numerical aperture, and collection numerical apertures in the FMM modeling of TSOM image acquisition, we reach precise agreement between the calculated and experimentally measured TSOM images. The essential elements of the FMM based TSOM for achieving high-level consistency are elucidated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metrological sensitivity improvement of through-focus scanning optical microscopy by controlling illumination coherence

Shin-Woong Park, Byeong Geon You, Gyunam Park, Youngbaek Kim, Junho Lee, Joong Hwee Cho, Yun Yi, and Hwi Kim
Opt. Express 27(3) 1981-1990 (2019)

Noise analysis for through-focus scanning optical microscopy

Ravikiran Attota
Opt. Lett. 41(4) 745-748 (2016)

Parameter optimization for through-focus scanning optical microscopy

Ravi Kiran Attota and Hyeonggon Kang
Opt. Express 24(13) 14915-14924 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
    [Crossref]
  2. R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
    [Crossref]
  3. A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect and CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
    [Crossref]
  4. R. K. Attota and H. Kang, “Parameter optimization for through-focus scanning optical microscopy,” Opt. Express 24(13), 14915–14924 (2016).
    [Crossref] [PubMed]
  5. M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
    [Crossref]
  6. H. Kim and B. Lee, “Mathematical modeling of crossed nanophotonic structures with generalized scattering-matrix method and local Fourier modal analysis,” J. Opt. Soc. Am. B 25(4), 518–544 (2008).
    [Crossref]
  7. H. Kim and B. Lee, “Pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures,” J. Opt. Soc. Am. A 25(1), 40–54 (2008).
    [Crossref] [PubMed]
  8. H. Kim, I. M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007).
    [Crossref] [PubMed]
  9. H. Kim, G. Park, and C. Kim, “Investigation of the convergence behavior with fluctuation features in the Fourier modal analysis of a metallic grating,” J. Opt. Soc. Korea 16(3), 196–202 (2012).
    [Crossref]
  10. H. Kim, Junghyun Park, and Byoungho Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).
  11. M. V. Ryabko, S. N. Koptyaev, A. V. Shcherbakov, A. D. Lantsov, and S. Y. Oh, “Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation,” Opt. Express 21(21), 24483–24489 (2013).
    [Crossref] [PubMed]
  12. M. Ryabko, A. Shchekin, S. Koptyaev, A. Lantsov, A. Medvedev, A. Shcherbakov, and S. Y. Oh, “Through-focus scanning optical aberrations: practical implementation,” Opt. Express 23, 32215–32221 (2015).
    [Crossref] [PubMed]
  13. R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc SPIE Int Soc Opt Eng 9778, 977811 (2016).
    [Crossref] [PubMed]
  14. R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express 24(15), 16574–16585 (2016).
    [Crossref] [PubMed]
  15. J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
    [Crossref] [PubMed]
  16. R. K. Attota and H. Park, “Optical microscope illumination analysis using through-focus scanning optical microscopy,” Opt. Lett. 42(12), 2306–2309 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (4)

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc SPIE Int Soc Opt Eng 9778, 977811 (2016).
[Crossref] [PubMed]

R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express 24(15), 16574–16585 (2016).
[Crossref] [PubMed]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

R. K. Attota and H. Kang, “Parameter optimization for through-focus scanning optical microscopy,” Opt. Express 24(13), 14915–14924 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (2)

2012 (2)

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect and CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

H. Kim, G. Park, and C. Kim, “Investigation of the convergence behavior with fluctuation features in the Fourier modal analysis of a metallic grating,” J. Opt. Soc. Korea 16(3), 196–202 (2012).
[Crossref]

2011 (2)

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

2008 (2)

2007 (1)

Arceo, A.

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect and CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

Attota, R.

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc SPIE Int Soc Opt Eng 9778, 977811 (2016).
[Crossref] [PubMed]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect and CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

Attota, R. K.

Barnes, B. M.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

Bunday, B.

R. K. Attota, P. Weck, J. A. Kramar, B. Bunday, and V. Vartanian, “Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy,” Opt. Express 24(15), 16574–16585 (2016).
[Crossref] [PubMed]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect and CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Dixson, R.

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Dixson, R. G.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

Henn, M.-A.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

Kang, H.

Kim, C.

Kim, H.

Koptyaev, S.

Koptyaev, S. N.

Kramar, J.

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc SPIE Int Soc Opt Eng 9778, 977811 (2016).
[Crossref] [PubMed]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Kramar, J. A.

Lantsov, A.

Lantsov, A. D.

Lee, B.

Lee, I. M.

Medvedev, A.

Novak, E.

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Oh, S. Y.

Park, G.

Park, H.

Pisarenco, M.

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

Potzick, J.

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Qin, J.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

Rudack, A.

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Ryabko, M.

Ryabko, M. V.

Setija, I.

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

Shchekin, A.

Shcherbakov, A.

Shcherbakov, A. V.

Silver, R. M.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

Vartanian, V.

Vladár, A.

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Weck, P.

Zhou, H.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

Light Sci. Appl. (1)

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M.-A. Henn, “Deep subwavelength nanometric image reconstruction using Fourier domain optical normalization,” Light Sci. Appl. 5, e16038 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc SPIE Int Soc Opt Eng (1)

R. Attota and J. Kramar, “Optimizing noise for defect analysis with through-focus scanning optical microscopy,” Proc SPIE Int Soc Opt Eng 9778, 977811 (2016).
[Crossref] [PubMed]

Proc. SPIE (4)

M. Pisarenco and I. Setija, “Alternative discretization in the aperiodic Fourier modal method leading to reduction in computational costs,” Proc. SPIE 8789, 87890K (2013).
[Crossref]

R. Attota, R. Dixson, and A. Vladár, “Through-focus scanning optical microscopy,” Proc. SPIE 8036, 803610 (2011).
[Crossref]

R. Attota, R. Dixson, J. Kramar, J. Potzick, A. Vladár, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect and CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

Other (1)

H. Kim, Junghyun Park, and Byoungho Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of an objective showing illumination and collection NAs, (b) the method of constructing a TSOM image; intensity profiles of dotted lines in the left figure and their respective cross-sectional images.
Fig. 2
Fig. 2 (a) Finite NA illumination light for TSOM imaging. (b) Angular spectrum representations of (c) coherent illumination and (d) incoherent illumination.
Fig. 3
Fig. 3 TSOM images with different fin width and their DTI (a) results from ref [2]. (b) calculated using FMM of this work.
Fig. 4
Fig. 4 The experimental setup of the FMM-TSOM metrology. INA and CNA are set to 0.275 and 0.55, respectively.
Fig. 5
Fig. 5 (a) TSOM image for 140 nm width single line fin structure which is obtained by experiment (left) and simulation (middle), and the DTI between experiment and simulation (right). (b) Sub-nanometer scale metrology using TSOM for 140nm width under the ROI of 101x101, 81x81, 61x61, and 41x41 pixels.
Fig. 6
Fig. 6 (a) TSOM image for 160 nm width single line fin structure which is obtained by experiment (left) and simulation (middle), and the DTI between experiment and simulation (right). (b) Sub-nanometer scale metrology using TSOM for 160nm width under the ROI of 101x101, 81x81, 61x61, and 41x41 pixels.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E x( y,z ) ( x,y,z )= α 2 + β 2 ( 1/ λN A illum ) 2 A x( y,z ) ( α,β ) e j2π( αx+βy+ ( 1/λ ) 2 α 2 β 2 z ) dαdβ,
α A x ( α,β )+β A y ( α,β )+ ( 1/λ ) 2 α 2 β 2 A z ( α,β )=0.
| E r |= g | E r,g | 2 ,
| E t |= g | E t,g | 2 .
E x( y,z ) ( x,y,z )= α 2 + β 2 ( 1/ λN A illum ) 2 | A x( y,z ) ( α,β ) e j2π( αx+βy+ ( 1/λ ) 2 α 2 β 2 z ) | dαdβ.
MSD= 1 N i=1 N ( TSOM simulation TSOM experiment ) 2 .

Metrics