Abstract

Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer from limited bandwidth and low tunability. Meanwhile, they are usually fabricated on flat and rigid substrates, and consequently their applications are restricted. Here, a simple approach is proposed and experimentally demonstrated to obtain a flexible and tunable THz all-dielectric metasurface. In this metasurface, micro ceramic spheres (ZrO2) are embedded in a ferroelectric (strontium titanate) / elastomer (polydimethylsiloxane) composite. It is shown that the Mie resonances in micro ceramic spheres can be thermally and reversibly tuned resulting from the temperature dependent permittivity of the ferroelectric / PDMS composite. This metasurface characterized by flexibility and tunability is expected to have a more extensive application in active THz devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible all-dielectric metamaterials in terahertz range based on ceramic microsphere/ PDMS composite

Chuwen Lan, Ke Bi, Baiwei Li, Yanjiao Zhao, and Zhaowei Qu
Opt. Express 25(23) 29155-29160 (2017)

Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range

Yanjiao Zhao, Baiwei Li, Chuwen Lan, Ke Bi, and Zhaowei Qu
Opt. Express 25(18) 22158-22163 (2017)

All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region

Jingyi Tian, Yuanqing Yang, Min Qiu, Fredrik Laurell, Valdas Pasiskevicius, and Hoon Jang
Opt. Express 25(20) 24068-24080 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Cui, D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2009).
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  5. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  6. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  7. M. Decker and I. Staude, “Resonant dielectric nanostructures: a lowlossplatform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  8. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  9. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  10. Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
    [Crossref]
  11. D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
    [Crossref] [PubMed]
  12. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  13. H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
    [Crossref]
  14. H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
    [Crossref]
  15. Y. Zhao, B. Li, C. Lan, K. Bi, and Z. Qu, “Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range,” Opt. Express 25(18), 22158–22163 (2017).
    [Crossref] [PubMed]
  16. C. Lan, K. Bi, B. Li, Y. Zhao, and Z. Qu, “Flexible all-dielectric metamaterials in terahertz range based on ceramic microsphere/PDMS composite,” Opt. Express 25(23), 29155–29160 (2017).
    [Crossref]
  17. V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
    [Crossref]
  18. J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
    [Crossref]
  19. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
    [Crossref] [PubMed]
  20. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [Crossref] [PubMed]
  21. M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
    [Crossref]

2018 (1)

2017 (4)

2016 (2)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a lowlossplatform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

2011 (2)

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

2010 (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (1)

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
[Crossref] [PubMed]

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

1997 (1)

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

Abbott, D.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Aieta, F.

Azad, A. K.

Belov, I.

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

Belov, V.

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

Bhaskaran, M.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Bi, K.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Capasso, F.

Chen, H. T.

Cui, B.

Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a lowlossplatform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Devlin, R.

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Fan, K.

Feng, S.

Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
[Crossref]

Fumeaux, C.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Gallot, G.

Genevet, P.

Geng, Z.

Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
[Crossref]

Gu, J.

Gutruf, P.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Han, J.

Harel, L.

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

Headland, D.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Hu, C.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jia, Q. X.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadlec, C.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kadlec, F.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Khorasaninejad, M.

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kosnosky, L.

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

Kuroda, S.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Kužel, P.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Lan, C.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, B.

Li, Y.

Liu, X.

Lott, J.

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mounaix, P.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nemec, H.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Nirantar, S.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Ouyang, C.

Padilla, W. J.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Podzorov, A.

Qu, Z.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shan, J.

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

Shiwa, M.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Singh, R.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Sriram, S.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a lowlossplatform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Suen, J. Y.

Taylor, A. J.

Tian, Z.

Wang, Q.

Watanabe, M.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Weder, C.

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

Wei, M.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Withayachumnankul, W.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

Xia, C.

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

Xu, Q.

Xu, Y.

Yahiaoui, R.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Yamawaki, H.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Yang, Y.

Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
[Crossref]

Zhang, H.

Zhang, W.

Zhang, X.

Zhao, Y.

Adv. Mater. (2)

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27(44), 7137–7144 (2015).
[Crossref] [PubMed]

J. Lott, C. Xia, L. Kosnosky, C. Weder, and J. Shan, “Terahertz photonic crystals based on barium titanate/polymer nanocomposites,” Adv. Mater. 20(19), 3649–3653 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yang, B. Cui, Z. Geng, and S. Feng, “Terahertz magnetic and electric Mie resonances of an all-dielectric one-dimensional grating,” Appl. Phys. Lett. 106(11), 111106 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

V. Belov, I. Belov, and L. Harel, “Preparation of Spherical Yttria- Stabilized Zirconia Powders by Reactive‐Spray Atomization,” J. Am. Ceram. Soc. 80(4), 982–990 (1997).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a lowlossplatform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for betterplasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nat. Nanotechnol. (2)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optica (2)

Photon. Res. (1)

Phys. Rev. B (1)

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Surf. Coat. Tech. (1)

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Tech. 205(19), 4620–4626 (2011).
[Crossref]

Other (1)

T. Cui, D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)- (d) The fabrication process of all-dielectric metasurface. (e) The scanning electron microscope (SEM) photograph of fabricated sample. The insert is the SEM picture of a single-layer spheres on the Kapton tape.
Fig. 2
Fig. 2 The simulated and measured transmission spectrum of specimen. The volume fraction of STO is 10%.
Fig. 3
Fig. 3 The simulated and measured transmission spectrum at different temperatures. The volume fraction of STO is 10 %. (a) Simulation. (b) The enlarged picture of (a) near the second resonance. (c) Experiment. (d) The enlarged picture of (c) near the second resonance.
Fig. 4
Fig. 4 The simulated and measured transmission spectrum at different temperatures. The volume fraction of STO is 15 %. (a) Simulation. (b) The enlarged picture of (a) near the second resonance. (c) Experiment. (d) The enlarged picture of (c) near the second resonance.
Fig. 5
Fig. 5 (a)Temperature variation of the second resonance in 10 cycles (b) The simulated transmission spectrum of all-dielectric metasurface at temperatures of 250 K and 400 K.

Tables (1)

Tables Icon

Table 1 The calculated permittivity of STO/ PDMS composite at different volume fractions of STO and temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n m = ( n f ) η ( n h ) 1η
ε= ε + f w 0 2 w 2 iwγ

Metrics