Abstract

We numerically demonstrate optical bistability in a nonlinear multilayer structure by utilizing the unique dispersion of hyperbolic metamaterials. The linear transmission is varied sharply with topological transition of isofrequency contour of the multilayer structure, and this non-resonant scheme enables realization of optical bistability with a short response time and a relatively low switching intensity. We have investigated exhaustively all possible topological transitions in the dispersion characteristics of the multilayer structure for optical bistability, and shown that the hyperbolic metamaterial (HMM) type transition from Type II to Type I, and the transition from Type II HMM to effective dielectric are suitable for realizing high-performances optical bistability. The proposed schemes can overcome the trade-off between a switching intensity and a response time in resonance based optical bistabilities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable and active hyperbolic metamaterials

Joseph S. T. Smalley, Felipe Vallini, Xiang Zhang, and Yeshaiahu Fainman
Adv. Opt. Photon. 10(2) 354-408 (2018)

Rough metal and dielectric layers make an even better hyperbolic metamaterial absorber

Andrei Andryieuski, Sergei V. Zhukovsky, and Andrei V. Lavrinenko
Opt. Express 22(12) 14975-14980 (2014)

Nanostructured graphene-based hyperbolic metamaterial performing as a wide-angle near infrared electro-optical switch

Maziar Shoaei, Mohammad Kazem Moravvej-Farshi, and Leila Yousefi
Appl. Opt. 54(5) 1206-1211 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
    [Crossref] [PubMed]
  3. H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
    [Crossref]
  4. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241 (2002).
    [Crossref]
  5. M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
    [Crossref] [PubMed]
  6. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17(26), 23459–23467 (2009).
    [Crossref] [PubMed]
  7. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [Crossref] [PubMed]
  8. A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
    [Crossref] [PubMed]
  9. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  10. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
    [Crossref] [PubMed]
  11. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  12. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  13. N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
    [Crossref] [PubMed]
  14. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  15. E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
    [Crossref]
  16. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
    [Crossref]
  17. P. B. Wood, J. B. Pendry, and D. P. Tasi, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [Crossref]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
    [Crossref]

2018 (1)

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

2016 (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

2013 (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

2009 (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17(26), 23459–23467 (2009).
[Crossref] [PubMed]

2007 (1)

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[Crossref] [PubMed]

2006 (3)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

P. B. Wood, J. B. Pendry, and D. P. Tasi, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

2004 (1)

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

2003 (1)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

2002 (2)

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241 (2002).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

2001 (1)

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Akimov, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Belov, A.

A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Chen, Z.

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Dijkhuis, J. I.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Fink, Y.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

Golubev, V. G.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Guan, D.

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hao, Y.

A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Herrmann, J.

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Husakou, A.

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[Crossref] [PubMed]

Ibanescu, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

Johnson, S. G.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kerst, R.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Kim, S.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

Kurdyukov, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Lavrinenko, A. V.

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Magnusson, R.

Mazurenko, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Mingaleev, S. F.

Ngo, Q. M.

Nihei, H.

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Okamoto, A.

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Panah, M. E. A.

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pendry, J. B.

P. B. Wood, J. B. Pendry, and D. P. Tasi, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Pevtsov, A. B.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Repan, T.

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Sel’kin, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Shkondin, E.

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Soljacic, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

Song, S. H.

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Takayama, O.

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

Tasi, D. P.

P. B. Wood, J. B. Pendry, and D. P. Tasi, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Vasilantonakis, N.

Wang, W.

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

Wood, P. B.

P. B. Wood, J. B. Pendry, and D. P. Tasi, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wu, W.

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

Wurtz, G. A.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Yang, G.

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

Zayats, A. V.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Appl. Nano Mater. (1)

E. Shkondin, T. Repan, M. E. A. Panah, A. V. Lavrinenko, and O. Takayama, “High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing,” Appl. Nano Mater. 1(3), 1212–1218 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Nano Converg (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearites of thin silver films,” Opt. Mater. 25(4), 439–443 (2004).
[Crossref]

Phys. Rev. B (2)

A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[Crossref]

P. B. Wood, J. B. Pendry, and D. P. Tasi, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Phys. Rev. E (1)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66(5), 055601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Other (2)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Schematic of the multilayer. dm and dd represent the thickness of the metal and dielectric layer, respectively. (b) A summarized optical phase diagram. P1, P2, and P3 represent the transitions from Type II HMM to Type I HMM, from Type II HMM to an effective dielectric, and from an effective metal to Type II HMM, respectively.
Fig. 2
Fig. 2 Isofrequency contour variations in multilayer structure from (a) Type II HMM to Type I HMM, (b) Type II HMM to an effective dielectric, and (c) an effective metal to Type I HMM.
Fig. 3
Fig. 3 Real and imaginary parts of the parallel (εx) and the perpendicular (εz) permittivities for the multilayer structure with fill fraction (a) p = 0.5 (P1 transition) and (b) p = 0.25 (P2 transition) (c) p = 0.75 (P3 transition), and the transmission spectra for various transition types: Type II HMM – Type I HMM (black line), Type II HMM – effective dielectric (red line), and effective metal – Type I HMM (blue line).
Fig. 4
Fig. 4 Transmission spectra for various thicknesses of the medium modelled by effective medium approach for (a) P1 transition (p = 0.5, nd = 2.38) and (b) P2 transition (p = 0.25, nd = 1.375).
Fig. 5
Fig. 5 (a) Transmission spectra for the number of pairs of the multilayer designed for the P1 transition. The multilayer consists of Ag (dm = 15 nm) and dielectric (dd = 15 nm) layers. (b) Enlarged transmission spectra (solid line) of (a) and their wavelength differential values (dash line) near the transition region for the number of pairs: 14 pairs (d = 420 nm), 15 pairs (d = 450 nm), 16 pairs (d = 480 nm), and 17 pairs (d = 510 nm).
Fig. 6
Fig. 6 Optical bistability by P1 transition in the multilayer consisting of Ag (dm = 15 nm) and dielectric (dd = 15 nm) layers with the number of pairs. (a) 14 pairs (d = 420 nm), (b) 15 pairs (d = 450 nm), (c) 16 pairs (d = 480 nm), and (d) 17 pairs (d = 510 nm). The operation wavelengths are (a) 440 nm for 14 pairs, (b) 437.8 nm for 15 pairs, (c) 436.2 nm for 16 pairs, and (d) 434.8 nm for 17 pairs.
Fig. 7
Fig. 7 (a) Transmission spectra for various thicknesses of Ag and dielectric layers with fixed thickness of multilayer (d = 480 nm). Optical bistability for various thicknesses of Ag and dielectric layers with fixed thickness of the multilayer (d = 480 nm): (b) Ag (dm = 5 nm) and dielectric layer (dd = 5 nm), (c) Ag (dm = 10 nm) and dielectric layer (dd = 10 nm), and (d) Ag (dm = 15 nm) and dielectric layer (dd = 15 nm). The operation wavelengths are (b) 449.7 nm for dm = 5 nm and dd = 5 nm, (c) 441.9 nm for dm = 10 nm and dd = 10 nm, (d) 442.2 nm for dm = 15 nm and dd = 15 nm,.
Fig. 8
Fig. 8 (a) Transmission spectra for the number of pairs of the multilayer designed for the P2 transition. The multilayer consists of Ag (dm = 15 nm) and dielectric (dd = 45 nm) layers. (b) Enlarged transmission spectra (solid line) of (a) and their differential values (dash line) near the transition region for the number of pairs: 10 pairs (d = 600 nm), 11 pairs (d = 660 nm), 12 pairs (d = 720 nm), and 13 pairs (d = 780 nm).
Fig. 9
Fig. 9 Optical bistability by P2 transition in the multilayer consisting of Ag (dm = 15 nm) and dielectric (dd = 45 nm) layers with the number of pairs. (a) 10 pairs (d = 600 nm), (b) 11 pairs (d = 660 nm), (c) 12 pairs (d = 720 nm), and (d) 13 pairs (d = 780 nm). The operation wavelengths are (a) 446 nm for 10 pairs, (b) 443.7 nm for 11 pairs, (c) 442nm for 12 pairs, and (d) 441 nm for 13 pairs.
Fig. 10
Fig. 10 (a) Transmission spectra for various thicknesses of Ag and dielectric layers with fixed thickness of the multilayer (d = 720 nm). Optical bistability for various thicknesses of Ag and dielectric layer with fixed thickness of multilayer (d = 480 nm): (b) Ag (dm = 5 nm) and dielectric layer (dd = 15 nm), (c) Ag (dm = 10 nm) and dielectric layer (dd = 30 nm), and (d) Ag (dm = 15 nm) and dielectric layer (dd = 45 nm). The operation wavelengths are (b) 440.5 nm for dm = 5 nm and dd = 15 nm, (c) 439 nm for dm = 10 nm and dd = 30 nm, (d) 445.7 nm for dm = 15 nm and dd = 45 nm,.
Fig. 11
Fig. 11 (a) Transmission spectra for the multilayer consisting of Ag (dm = 30 nm) and dielectric (dd = 10 nm) layers designed for the P3 transition, (b) optical bistability curves. The operating wavelength is 453 nm.
Fig. 12
Fig. 12 Temporal response of the multilayer structure consisting of Ag (dm = 15 nm) and dielectric (dd = 15 nm) layers with (a) 14 pairs (d = 420 nm), (b) 15 pairs (d = 450 nm), (c) 16 pairs (d = 480 nm), and (d) 17 pairs (d = 510 nm). The operation wavelengths are (a) 440 nm for 14 pairs, (b) 437.8 nm for 15 pairs, (c) 436.2 nm for 16 pairs, and (d) 434.8 nm for 17 pairs.
Fig. 13
Fig. 13 Temporal response of multilayer structure consisting of Ag (dm = 15 nm) and dielectric (dd = 45 nm) layers with (a) 10 pairs (d = 600 nm), (b) 11 pairs (d = 660 nm), (c) 12 pairs (d = 720 nm), and (d) 13 pairs (d = 780 nm). The operation wavelengths are (a) 446 nm for 10 pairs, (b) 443.7 nm for 11 pairs, (c) 442 nm for 12 pairs, and (d) 441 nm for 13 pairs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε xx = ε yy =p ε m +( 1p ) ε d ,
ε zz = ( p ε m + 1p ε d ) 1 ,

Metrics