Abstract

Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  2. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  3. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
    [Crossref]
  4. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(358), 1–13 (2015).
  5. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  6. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
    [Crossref]
  7. T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm- range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America, 2011).
  8. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
    [Crossref]
  9. M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
    [Crossref]
  10. R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
    [Crossref]
  11. Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C,” J. Lightwave Technol. 33(6), 1223–1229 (2017).
    [Crossref]
  12. K. Tanabe, K. Watanabe, and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces,” Opt. Express 20(26), B315–B321 (2012).
    [Crossref] [PubMed]
  13. Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
    [Crossref]
  14. B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
    [Crossref]
  15. S. Kim, S. Kim, J. Shim, D. Geum, G. Ju, H. Kim, H. Lim, H. Lim, J. Han, S. Lee, H. Kim, P. Bidenko, C. Kang, D. Lee, J. Song, W. Choi, and H. Kim, “Heterogeneous Integration toward a Monolithic 3D Chip Enabled by III-V and Ge Materials,” IEEE J. Electron Dev. Soc. (2018).
  16. M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD,” J. Cryst. Growth 68(1), 21–26 (1984).
    [Crossref]
  17. S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
    [Crossref]
  18. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
    [Crossref]
  19. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
    [Crossref] [PubMed]
  20. A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
    [Crossref]
  21. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  22. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
    [Crossref] [PubMed]
  23. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
    [Crossref]
  24. Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
    [Crossref] [PubMed]
  25. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref] [PubMed]
  26. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
    [Crossref]
  27. S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
    [Crossref] [PubMed]
  28. Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
    [Crossref]
  29. B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
    [Crossref]
  30. R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
    [Crossref]
  31. H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
    [Crossref]
  32. T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
    [Crossref]
  33. J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
    [Crossref]
  34. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
    [Crossref]

2018 (2)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

2017 (7)

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C,” J. Lightwave Technol. 33(6), 1223–1229 (2017).
[Crossref]

2016 (4)

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

2015 (3)

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(358), 1–13 (2015).

2014 (3)

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

2012 (2)

K. Tanabe, K. Watanabe, and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces,” Opt. Express 20(26), B315–B321 (2012).
[Crossref] [PubMed]

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

2011 (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

2009 (1)

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

2008 (2)

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

2005 (1)

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

1998 (1)

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

1985 (1)

S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
[Crossref]

1984 (1)

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD,” J. Cryst. Growth 68(1), 21–26 (1984).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Akiyama, M.

S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
[Crossref]

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD,” J. Cryst. Growth 68(1), 21–26 (1984).
[Crossref]

Alcotte, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Arakawa, Y.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C,” J. Lightwave Technol. 33(6), 1223–1229 (2017).
[Crossref]

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces,” Opt. Express 20(26), B315–B321 (2012).
[Crossref] [PubMed]

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Bao, X. Y.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Baron, T.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bassani, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Beanland, R.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Benamara, M.

Bogumilowicz, Y.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bowers, J. E.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Cai, S.

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Callahan, P. G.

Chen, J.

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

Chen, S.

Childs, D.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Cipro, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

David, S.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Deppe, D. G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Di, L.

Dorogan, V. G.

Ducroquet, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Ebe, H.

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Echlin, M. P.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Fujikata, J.

Gossard, A.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Gossard, A. C.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Groom, K. M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Guo, X.

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Hatori, N.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C,” J. Lightwave Technol. 33(6), 1223–1229 (2017).
[Crossref]

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Hopkinson, M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Horikawa, T.

Hu, E. L.

Huang, D.

Huang, X.

Huang, Y.

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Huffaker, D. L.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Inomata, H.

S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
[Crossref]

Ishida, M.

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Iwamoto, S.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Jang, B.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Jhang, Y.-H.

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Jia, Z.

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Jung, D.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Kako, S.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Kaminishi, K.

S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
[Crossref]

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD,” J. Cryst. Growth 68(1), 21–26 (1984).
[Crossref]

Kawarada, Y.

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD,” J. Cryst. Growth 68(1), 21–26 (1984).
[Crossref]

Kennedy, M. J.

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Kunert, B.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Kuramata, A.

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

Lau, K. M.

Lee, M. L.

Li, Q.

Li, T.

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liao, M.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, A. W. K.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Liu, A. Y.

Liu, H.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Liu, H. Y.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Liu, K.

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

MacFarlane, I.

Martin, M.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Mazur, Y. I.

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(358), 1–13 (2015).

Mizutani, K.

Moeyaert, J.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Mowbray, D. J.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Mukherjee, K.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Nakamura, T.

Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C,” J. Lightwave Technol. 33(6), 1223–1229 (2017).
[Crossref]

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Nakata, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Németh, I.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Ng, K. W.

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

Nishi, H.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Nishi, S.

S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
[Crossref]

Noguchi, M.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Norman, J.

Norman, J. C.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

Okumura, S.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Otsubo, K.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Park, G.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Peters, J.

Pin, J. B.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Pollock, T. M.

Reinhard, S.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Ren, X.

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Salamo, G. J.

Sanchez, A. M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

Sanchez, E.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Seeds, A.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Selvidge, J.

Shang, C.

Shchekin, O. B.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Shin, B.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Stolz, W.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Sudo, H.

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

Sugawara, M.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Takemasa, K.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Tanabe, K.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces,” Opt. Express 20(26), B315–B321 (2012).
[Crossref] [PubMed]

Tang, M.

Tatebayashi, J.

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

Tomoyuki, A.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Torres, A.

Tsuchizawa, T.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Urino, Y.

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Usuki, T.

Volz, K.

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Wan, Y.

Wang, P.

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Wang, Q.

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Watanabe, K.

Wu, J.

Yamada, K.

Ye, Z.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(358), 1–13 (2015).

Zhang, C.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Zhang, Z.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, L. Di, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(358), 1–13 (2015).

Zou, Z.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

ACS Photonics (1)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

APL Mater. (1)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Y. Bao, J. B. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

APL Photonics (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

Appl. Phys. Express (1)

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Appl. Phys. Lett. (4)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73(18), 2564–2566 (1998).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, and A. Kuramata, “1.28μm lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 86(5), 053107 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

J. Appl. Phys. (2)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot laser,” J. Appl. Phys. 103(1), 014913 (2008).
[Crossref]

J. Cryst. Growth (2)

M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of GaAs on Si by MOVCD,” J. Cryst. Growth 68(1), 21–26 (1984).
[Crossref]

H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, “MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm,” J. Cryst. Growth 455(C), 168–171 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32(2), 02C108 (2014).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Nishi, H. Inomata, M. Akiyama, and K. Kaminishi, “Growth of Single Domain GaAs on 2-inch Si(100) Substrate by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24(6), L391–L393 (1985).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, A. Tomoyuki, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B8B), L1124–L1126 (2004).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(358), 1–13 (2015).

Nat. Photonics (4)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Physica E (1)

T. Li, Q. Wang, X. Guo, Z. Jia, P. Wang, X. Ren, Y. Huang, and S. Cai, “The saturation density property of InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition,” Physica E 44(7), 1146–1151 (2012).
[Crossref]

Thin Solid Films (1)

B. Kunert, I. Németh, S. Reinhard, K. Volz, and W. Stolz, “Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate,” Thin Solid Films 517(1), 140–143 (2008).
[Crossref]

Other (2)

S. Kim, S. Kim, J. Shim, D. Geum, G. Ju, H. Kim, H. Lim, H. Lim, J. Han, S. Lee, H. Kim, P. Bidenko, C. Kang, D. Lee, J. Song, W. Choi, and H. Kim, “Heterogeneous Integration toward a Monolithic 3D Chip Enabled by III-V and Ge Materials,” IEEE J. Electron Dev. Soc. (2018).

T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm- range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic diagram of the InAs/GaAs QD laser structure grown on the on-axis Si (001) substrate.
Fig. 2
Fig. 2 Scanning electron microscope image of an InAs/GaAs QD laser structure on Si (001) substrate. The yellow regions indicate the AuGeNi/Au p- and n- electrode as labelled.
Fig. 3
Fig. 3 Scanning electron microscope image of a sample grown on a Si (001) substrate. The arrows indicate the anti-phase boundaries in the GaAs buffer layer, showing clear termination of the anti-phase boundaries well within the layer. The bottom image shows a high magnification image. The white rectangle in upper image indicates the area of the bottom image.
Fig. 4
Fig. 4 1 × 1 μm2 AFM images of uncapped InAs/GaAs QDs grown on (a) GaAs and (b)GaAs/Si (001) substrates, respectively.
Fig. 5
Fig. 5 (a) Cross sectional bright-field TEM image of buffer layer structure on GaAs/Si (001) substrates and (b) dependence of dislocation density on the distance from III-V / Si hetero-interface.
Fig. 6
Fig. 6 PL comparison of an InAs/GaAs QD sample grown on GaAs/Si (001) to a reference sample grown on GaAs substrate at room temperature under the same pump conditions.
Fig. 7
Fig. 7 L-I curve of an InAs/GaAs QD laser grown on GaAs/Si (001) substrate under pulsed operation conditions at room temperature (25°C).
Fig. 8
Fig. 8 Emission spectra of the InAs/GaAs QD laser on GaAs/Si (001) substrate at room temperature (25 °C).
Fig. 9
Fig. 9 L-I curves of an InAs/GaAs QD laser grown on GaAs/Si (001) substrate under pulsed operation conditions at various temperatures.

Metrics