Abstract

The doubly periodic Si photonic crystal waveguide radiates the guided slow light into free space as an optical beam. The waveguide also functions as a beam steering device, in which the steering angle is changed substantially by a slight variation in the wavelength generated due to the large angular dispersion of the slow light. A similar function is obtained when the wavelength is fixed and the refractive index of the waveguide is changed. In this study, we tested two kinds of integrated heater structures and observed the beam steering using the thermo-optic effect. For a p–i–p doped waveguide, the heating current was made to flow directly across the waveguide and a beam steering range of 21° was obtained with a relatively low heating power and high-speed response of the order of 100 kHz, maintaining a narrow beam divergence of 0.1−0.3° and a 120 resolution points. We also performed a preliminary life test of the device but did not observe any severe degradation in the temperature variation of 80–430 K for the duration up to 20‒40 h. For a TiN heater device, we obtained the comparable beam steering characteristics, but the required heating power increased, and the response speed decreased drastically.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide

Hiroshi Abe, Moe Takeuchi, Goro Takeuchi, Hiroyuki Ito, Tomoki Yokokawa, Keisuke Kondo, Yuya Furukado, and Toshihiko Baba
Opt. Express 26(8) 9389-9397 (2018)

Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing

Hiroyuki Ito, Tomoki Tatebe, Hiroshi Abe, and Toshihiko Baba
Opt. Express 26(20) 26145-26155 (2018)

Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating

Keisuke Kondo, Tomoki Tatebe, Shoji Hachuda, Hiroshi Abe, Fumio Koyama, and Toshihiko Baba
Opt. Lett. 42(23) 4990-4993 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
    [Crossref]
  2. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
    [Crossref] [PubMed]
  3. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  4. J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).
  5. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
    [Crossref] [PubMed]
  6. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  7. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
    [Crossref]
  8. H. Hashiguchi, K. Kondo, T. Baba, and H. Arai, “An optical leaky wave antenna by a waffled structure,” J. Lightwave Technol. 35(11), 2273–2279 (2017).
    [Crossref]
  9. K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42(23), 4990–4993 (2017).
    [Crossref] [PubMed]
  10. X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
    [Crossref]
  11. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
    [Crossref]
  12. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
    [Crossref]
  13. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
    [Crossref]
  14. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC University, 2001).

2018 (1)

2017 (2)

2016 (1)

2015 (1)

2014 (2)

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

2013 (1)

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

2012 (1)

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

2011 (2)

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

2010 (1)

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Abe, H.

Abediasl, H.

Aoyagi, I.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Arai, H.

Baba, T.

Baets, R.

Bovington, J. T.

Bowers, J. E.

Chen, R. T.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Coldren, L. A.

Cole, D. B.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Coolbaugh, D.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Covey, J.

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Doylend, J. K.

Feshali, A.

Fuchida, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

Furukado, Y.

Gu, X.

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

Hachuda, S.

Hashemi, H.

Hashiguchi, H.

Hayakawa, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Heck, J.

Heck, M. J. R.

Hosoi, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Hosseini, A.

Hosseini, E.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Hutchison, D. N.

Ishikura, N.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Ishimura, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

Ito, H.

Ito, K.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Kagami, M.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Kato, S.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Kim, W.

Kondo, K.

Koyama, F.

K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42(23), 4990–4993 (2017).
[Crossref] [PubMed]

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

Kumar, R.

Kwong, D.

Leake, G.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Maeda, M.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Matsubara, H.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Matsunami, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

Moresco, M.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Niclass, C.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Peters, J. D.

Phare, C. T.

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Rogier, H.

Rong, H.

Shimada, T.

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

Shinkawa, M.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Soga, M.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Su, Z.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Subbaraman, H.

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
[Crossref]

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Takeuchi, G.

Takeuchi, M.

Tamanuki, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Tatebe, T.

Timurdogan, E.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Van Acoleyen, K.

Watts, M. R.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Xu, X.

Yaacobi, A.

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Yokokawa, T.

Zhang, Y.

Appl. Phys. Lett. (3)

X. Gu, T. Shimada, A. Fuchida, A. Matsunami, A. Ishimura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21), 211107 (2011).
[Crossref]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Sun, A. Yaacobi, E. Timurdogan, Z. Su, D. B. Cole, E. Hosseini, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Large-scale integrated silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

IEEE Photonics J. (1)

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 25664-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Other (1)

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC University, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of beam steering device with (a) p–i–p doped Si PCW or (b) TiN heaters buried inside upper SiO2 cladding adjacent to the PCW.
Fig. 2
Fig. 2 Calculation of (a) the photonic band of PCW with ∆r = 0 and (b) the radiation angle of light with heating. The gray zone in (a) depicts the SiO2 light cone showing the radiation condition.
Fig. 3
Fig. 3 Temperature simulation by FEM. (a) Total view of the simulation model (left) and magnified top view around the PCW (right) for the p–i–p device. (b) Those for the TiN device. (c) Temperature distribution of model (a) for heating power density P/L = 0.22 W/cm. (d) That of model (b) for P/L = 0.46 W/cm.
Fig. 4
Fig. 4 Fabricated devices. (a) p–i–p device with L = 800 μm, a = 400 nm, 2r = 200 nm, and ∆r = 10 nm. (b) TiN device with L = 1000 μm, 2r = 220 nm, and ∆r = 4 nm.
Fig. 5
Fig. 5 FFP of radiated beam (a) p–i–p device at λ = 1563 nm with no heating. (b) p–i–p device with heating. (c) TiN device with heating.
Fig. 6
Fig. 6 Measured beam steering characteristics with heating power. (a) Radiation angle θ. (b) Beam divergence δθ. The abrupt increase and decrease in δθ arise from the change of sidelobe level; when the sidelobe level exceeds the half intensity of the main lobe, the total width from the main lobe to the sidelobe was counted as δθ.
Fig. 7
Fig. 7 Measurement of response speed. The inset shows the time-averaged FFP when the AC voltage was applied at f = 1 kHz.
Fig. 8
Fig. 8 Evaluation of stability. (a) Simple fiber module. (b) Long time measurement of the steering range at different temperature for the AC current injection at f = 1 kHz.

Tables (1)

Tables Icon

Table 1 Material constants used for calculating the thermal characteristics.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ= sin 1 n eq ,
n eq = 1 k 0 ( π a β ),
dθ dn = n g n eq n 1 n eq 2 ,
n Si = 3.48 + 1.86×1 0 4 ΔT.

Metrics