Abstract

In this paper, we propose an objective evaluation method which considers three major factors affecting the visual comfort of viewing a stereoscopic video: the horizontal disparity, the vertical disparity, and the motion. Three experiments are conducted which aim to investigate the effect of three factors on visual comfort. The experimental results show that the visual comfort decreases with increasing the disparity magnitude and motion velocity. Both fast planar motion and depth motion have a negative impact on visual comfort. Finally, we verify the performance of the proposed whole evaluation measure. The experimental results show that the proposed objective evaluation method exhibits good consistency with the subjective evaluation results.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full-reference quality assessment of stereoscopic images by learning binocular visual properties

Jian Ma, Ping An, Liquan Shen, and Kai Li
Appl. Opt. 56(29) 8291-8302 (2017)

Optimizing multiview video plus depth retargeting technique for stereoscopic 3D displays

Feng Shao, Wenchong Lin, Randi Fu, Mei Yu, and Gangyi Jiang
Opt. Express 25(11) 12478-12492 (2017)

Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals

Feng Shao, Qiuping Jiang, Randi Fu, Mei Yu, and Gangyi Jiang
Opt. Express 24(11) 11640-11653 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Hwang, H. S. Chang, and I. S. Kweon, “Local deformation calibration for autostereoscopic 3D display,” Opt. Express 25(10), 10801–10814 (2017).
    [Crossref] [PubMed]
  2. J. S. Chen, Q. Y. J. Smithwick, and D. P. Chu, “Coarse integral holography approach for real 3D color video displays,” Opt. Express 24(6), 6705–6718 (2016).
    [Crossref] [PubMed]
  3. J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
    [Crossref] [PubMed]
  4. M. Urvoy, M. Barkowsky, and P. L. Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors,” annals of telecommunications - annales des télécommunications 68(11–12), 641–655 (2013).
    [Crossref]
  5. M. Emoto, T. Niida, and F. Okano, “Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television,” J. Disp. Technol. 1(2), 328–340 (2005).
    [Crossref]
  6. D. Kim, S. K. Kim, and K. Sohn, “Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display,” Opt. Eng. 54(5), 053107 (2015).
    [Crossref]
  7. C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
    [Crossref]
  8. F. Liu, Y. Niu, and H. Jin, “Keystone correction for stereoscopic cinematography,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1–7.
  9. W. A. Ijsselsteijn, H. D. Ridder, and R. Hamberg, “Perceptual factors in stereoscopic displays. The effect of stereoscopic filming parameters on perceived quality and reported eyestrain,” Proc. SPIE 3299, 282–291 (1998).
    [Crossref]
  10. R. E. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
    [Crossref]
  11. W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
    [Crossref]
  12. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
    [Crossref] [PubMed]
  13. F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
    [Crossref]
  14. F. Speranza, W. J. Tam, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
    [Crossref]
  15. C. Shigeru, “3D consortium safety guidelines for popularization of human-friendly 3D,” Eizo Joho Media Gakkai Gijutsu Hokoku 30(34), 21–24 (2006).
  16. D. Kim and K. Sohn, “Visual fatigue prediction for stereoscopic image,” IEEE Trans. Circ. Syst. Video Tech. 21(2), 231–236 (2011).
    [Crossref]
  17. C. Jung, H. Liu, and Y. Cui, “Visual comfort assessment for stereoscopic 3D images based on salient discomfort regions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2015), pp.4047–4051.
    [Crossref]
  18. K. Sasaki, M. Yoshizawa, N. Sugita, and M. Abe, “Evaluation of visual fatigue while watching artificial three-dimensional image with vertical parallax,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2015), pp. 666–667.
    [Crossref]
  19. Y. J. Jung and S. Lee, “Visual comfort assessment metric based on salient object motion information in stereoscopic video,” J. Electron. Imaging 21(1), 59–79 (2012).
  20. J. Li, M. Barkowsky, and P. L. Callet, “Visual discomfort of stereoscopic 3D videos: Influence of 3D motion,” Displays 35(1), 49–57 (2014).
    [Crossref]
  21. H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
    [Crossref]
  22. H. G. Kim, S. I. Lee, and Y. Man Ro, “Experimental investigation of the effect of binocular disparity on the visibility threshold of asymmetric noise in stereoscopic viewing,” Opt. Express 24(17), 19607–19615 (2016).
    [Crossref] [PubMed]
  23. F. Xue, C. Jung, and J. Kim, “Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect,” Displays 42, 43–50 (2016).
    [Crossref]
  24. J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
    [Crossref]
  25. J. Yong, H. Sohn, and S. Lee, “Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images,” Proc. SPIE 8648, 86480M (2013).
  26. J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
    [Crossref]
  27. S. H. Zhong, Y. Liu, and Q. C. Chen, “Visual orientation inhomogeneity based scale-invariant feature transform,” Expert Syst. Appl. 42(13), 5658–5667 (2015).
    [Crossref]
  28. Z. H. Wang, H. Liu, and Z. Huo, “Scale-invariant feature matching based on pairs of feature points,” Computer Vision, IET. 9(6), 789–796 (2015).
    [Crossref]
  29. J. Li, “Methods for assessment and prediction of QoE, preference and visual discomfort in multimedia application with focus on S-3DTV,” Nantes University (2014).
  30. C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
    [Crossref]
  31. ITU-R BT.500–13, “Methodology for the subjective assessment of the quality of television pictures,” (2012).
  32. IEEE-SA stereo video database [Online]. Available: http://grouper.ieee.org/groups/3dhf/
  33. IVY LAB Stereoscopic video data set [Online]. Available: http://ivylab.kaist.ac.kr/demo/ivy3D-LocalMotion/index.htm
  34. After Effects software [Online]. Available: http://supportdownloads.adobe.com/product.jsp?platform=Windows&product=13
  35. ITU-R BT.500–11, “Methodology for the subjective assessment of the quality of television pictures,” (2002).
  36. ITU-R BT.1438, “Subjective assessment of stereoscopic television pictures,” (2000).
  37. SPSS software [Online]. Available: http://www.ibm.com/analytics/us/en/technology/spss/
  38. J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
    [Crossref]

2017 (1)

2016 (4)

J. S. Chen, Q. Y. J. Smithwick, and D. P. Chu, “Coarse integral holography approach for real 3D color video displays,” Opt. Express 24(6), 6705–6718 (2016).
[Crossref] [PubMed]

H. G. Kim, S. I. Lee, and Y. Man Ro, “Experimental investigation of the effect of binocular disparity on the visibility threshold of asymmetric noise in stereoscopic viewing,” Opt. Express 24(17), 19607–19615 (2016).
[Crossref] [PubMed]

F. Xue, C. Jung, and J. Kim, “Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect,” Displays 42, 43–50 (2016).
[Crossref]

J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
[Crossref]

2015 (6)

H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
[Crossref]

S. H. Zhong, Y. Liu, and Q. C. Chen, “Visual orientation inhomogeneity based scale-invariant feature transform,” Expert Syst. Appl. 42(13), 5658–5667 (2015).
[Crossref]

Z. H. Wang, H. Liu, and Z. Huo, “Scale-invariant feature matching based on pairs of feature points,” Computer Vision, IET. 9(6), 789–796 (2015).
[Crossref]

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
[Crossref]

J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
[Crossref] [PubMed]

D. Kim, S. K. Kim, and K. Sohn, “Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display,” Opt. Eng. 54(5), 053107 (2015).
[Crossref]

2014 (2)

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

J. Li, M. Barkowsky, and P. L. Callet, “Visual discomfort of stereoscopic 3D videos: Influence of 3D motion,” Displays 35(1), 49–57 (2014).
[Crossref]

2013 (2)

J. Yong, H. Sohn, and S. Lee, “Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images,” Proc. SPIE 8648, 86480M (2013).

M. Urvoy, M. Barkowsky, and P. L. Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors,” annals of telecommunications - annales des télécommunications 68(11–12), 641–655 (2013).
[Crossref]

2012 (3)

C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
[Crossref]

J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
[Crossref]

Y. J. Jung and S. Lee, “Visual comfort assessment metric based on salient object motion information in stereoscopic video,” J. Electron. Imaging 21(1), 59–79 (2012).

2011 (3)

D. Kim and K. Sohn, “Visual fatigue prediction for stereoscopic image,” IEEE Trans. Circ. Syst. Video Tech. 21(2), 231–236 (2011).
[Crossref]

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

2007 (1)

R. E. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
[Crossref]

2006 (2)

F. Speranza, W. J. Tam, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

C. Shigeru, “3D consortium safety guidelines for popularization of human-friendly 3D,” Eizo Joho Media Gakkai Gijutsu Hokoku 30(34), 21–24 (2006).

2005 (1)

M. Emoto, T. Niida, and F. Okano, “Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

2004 (1)

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

1998 (1)

W. A. Ijsselsteijn, H. D. Ridder, and R. Hamberg, “Perceptual factors in stereoscopic displays. The effect of stereoscopic filming parameters on perceived quality and reported eyestrain,” Proc. SPIE 3299, 282–291 (1998).
[Crossref]

Abe, M.

K. Sasaki, M. Yoshizawa, N. Sugita, and M. Abe, “Evaluation of visual fatigue while watching artificial three-dimensional image with vertical parallax,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2015), pp. 666–667.
[Crossref]

Banks, M. S.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Barkowsky, M.

J. Li, M. Barkowsky, and P. L. Callet, “Visual discomfort of stereoscopic 3D videos: Influence of 3D motion,” Displays 35(1), 49–57 (2014).
[Crossref]

M. Urvoy, M. Barkowsky, and P. L. Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors,” annals of telecommunications - annales des télécommunications 68(11–12), 641–655 (2013).
[Crossref]

Bovik, A. C.

J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
[Crossref]

J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
[Crossref] [PubMed]

Callet, P. L.

J. Li, M. Barkowsky, and P. L. Callet, “Visual discomfort of stereoscopic 3D videos: Influence of 3D motion,” Displays 35(1), 49–57 (2014).
[Crossref]

M. Urvoy, M. Barkowsky, and P. L. Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors,” annals of telecommunications - annales des télécommunications 68(11–12), 641–655 (2013).
[Crossref]

Chang, H. S.

Chen, J.

J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
[Crossref]

Chen, J. S.

Chen, Q. C.

S. H. Zhong, Y. Liu, and Q. C. Chen, “Visual orientation inhomogeneity based scale-invariant feature transform,” Expert Syst. Appl. 42(13), 5658–5667 (2015).
[Crossref]

Chen, Z.

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

Choi, J.

J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
[Crossref]

Choi, S.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
[Crossref]

J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
[Crossref]

Chu, D. P.

Cui, Y.

C. Jung, H. Liu, and Y. Cui, “Visual comfort assessment for stereoscopic 3D images based on salient discomfort regions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2015), pp.4047–4051.
[Crossref]

Emoto, M.

M. Emoto, T. Niida, and F. Okano, “Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Goma, S.

C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
[Crossref]

Ham, B.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
[Crossref]

Hamberg, R.

W. A. Ijsselsteijn, H. D. Ridder, and R. Hamberg, “Perceptual factors in stereoscopic displays. The effect of stereoscopic filming parameters on perceived quality and reported eyestrain,” Proc. SPIE 3299, 282–291 (1998).
[Crossref]

Hoffman, D. M.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Huang, X.

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

Huo, Z.

Z. H. Wang, H. Liu, and Z. Huo, “Scale-invariant feature matching based on pairs of feature points,” Computer Vision, IET. 9(6), 789–796 (2015).
[Crossref]

Hur, N.

F. Speranza, W. J. Tam, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Hwang, H.

Ijsselsteijn, W. A.

W. A. Ijsselsteijn, H. D. Ridder, and R. Hamberg, “Perceptual factors in stereoscopic displays. The effect of stereoscopic filming parameters on perceived quality and reported eyestrain,” Proc. SPIE 3299, 282–291 (1998).
[Crossref]

Jin, H.

F. Liu, Y. Niu, and H. Jin, “Keystone correction for stereoscopic cinematography,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1–7.

Jung, C.

F. Xue, C. Jung, and J. Kim, “Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect,” Displays 42, 43–50 (2016).
[Crossref]

C. Jung, H. Liu, and Y. Cui, “Visual comfort assessment for stereoscopic 3D images based on salient discomfort regions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2015), pp.4047–4051.
[Crossref]

Jung, Y. J.

Y. J. Jung and S. Lee, “Visual comfort assessment metric based on salient object motion information in stereoscopic video,” J. Electron. Imaging 21(1), 59–79 (2012).

Kim, D.

D. Kim, S. K. Kim, and K. Sohn, “Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display,” Opt. Eng. 54(5), 053107 (2015).
[Crossref]

J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
[Crossref]

D. Kim and K. Sohn, “Visual fatigue prediction for stereoscopic image,” IEEE Trans. Circ. Syst. Video Tech. 21(2), 231–236 (2011).
[Crossref]

Kim, H. G.

Kim, J.

F. Xue, C. Jung, and J. Kim, “Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect,” Displays 42, 43–50 (2016).
[Crossref]

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Kim, S. K.

D. Kim, S. K. Kim, and K. Sohn, “Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display,” Opt. Eng. 54(5), 053107 (2015).
[Crossref]

Kooi, F.

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

Kweon, I. S.

Lee, S.

J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
[Crossref] [PubMed]

J. Yong, H. Sohn, and S. Lee, “Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images,” Proc. SPIE 8648, 86480M (2013).

Y. J. Jung and S. Lee, “Visual comfort assessment metric based on salient object motion information in stereoscopic video,” J. Electron. Imaging 21(1), 59–79 (2012).

Lee, S. I.

Li, J.

J. Li, M. Barkowsky, and P. L. Callet, “Visual discomfort of stereoscopic 3D videos: Influence of 3D motion,” Displays 35(1), 49–57 (2014).
[Crossref]

Likova, L. T.

C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
[Crossref]

Liu, F.

F. Liu, Y. Niu, and H. Jin, “Keystone correction for stereoscopic cinematography,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1–7.

Liu, H.

Z. H. Wang, H. Liu, and Z. Huo, “Scale-invariant feature matching based on pairs of feature points,” Computer Vision, IET. 9(6), 789–796 (2015).
[Crossref]

C. Jung, H. Liu, and Y. Cui, “Visual comfort assessment for stereoscopic 3D images based on salient discomfort regions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2015), pp.4047–4051.
[Crossref]

Liu, Y.

S. H. Zhong, Y. Liu, and Q. C. Chen, “Visual orientation inhomogeneity based scale-invariant feature transform,” Expert Syst. Appl. 42(13), 5658–5667 (2015).
[Crossref]

Lv, C.

H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
[Crossref]

Man Ro, Y.

Niida, T.

M. Emoto, T. Niida, and F. Okano, “Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Niu, Y.

F. Liu, Y. Niu, and H. Jin, “Keystone correction for stereoscopic cinematography,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1–7.

Oh, C.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
[Crossref]

Oh, H.

J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
[Crossref] [PubMed]

Okano, F.

M. Emoto, T. Niida, and F. Okano, “Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

Ono, H.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Park, J.

J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
[Crossref] [PubMed]

Patterson, R. E.

R. E. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
[Crossref]

Ramachandra, V.

C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
[Crossref]

Ren, H.

H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
[Crossref]

Ridder, H. D.

W. A. Ijsselsteijn, H. D. Ridder, and R. Hamberg, “Perceptual factors in stereoscopic displays. The effect of stereoscopic filming parameters on perceived quality and reported eyestrain,” Proc. SPIE 3299, 282–291 (1998).
[Crossref]

Sasaki, K.

K. Sasaki, M. Yoshizawa, N. Sugita, and M. Abe, “Evaluation of visual fatigue while watching artificial three-dimensional image with vertical parallax,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2015), pp. 666–667.
[Crossref]

Shi, J.

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

Shibata, T.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Shigeru, C.

C. Shigeru, “3D consortium safety guidelines for popularization of human-friendly 3D,” Eizo Joho Media Gakkai Gijutsu Hokoku 30(34), 21–24 (2006).

Shimono, K.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Smithwick, Q. Y. J.

Sohn, C.

J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
[Crossref]

Sohn, H.

J. Yong, H. Sohn, and S. Lee, “Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images,” Proc. SPIE 8648, 86480M (2013).

Sohn, K.

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
[Crossref]

D. Kim, S. K. Kim, and K. Sohn, “Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display,” Opt. Eng. 54(5), 053107 (2015).
[Crossref]

D. Kim and K. Sohn, “Visual fatigue prediction for stereoscopic image,” IEEE Trans. Circ. Syst. Video Tech. 21(2), 231–236 (2011).
[Crossref]

Speranza, F.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

F. Speranza, W. J. Tam, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Su, Z.

H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
[Crossref]

Sugita, N.

K. Sasaki, M. Yoshizawa, N. Sugita, and M. Abe, “Evaluation of visual fatigue while watching artificial three-dimensional image with vertical parallax,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2015), pp. 666–667.
[Crossref]

Sun, J.

J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
[Crossref]

Tai, Y.

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

Tam, W. J.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

F. Speranza, W. J. Tam, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

Toet, A.

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

Tyler, C. W.

C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
[Crossref]

Urvoy, M.

M. Urvoy, M. Barkowsky, and P. L. Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors,” annals of telecommunications - annales des télécommunications 68(11–12), 641–655 (2013).
[Crossref]

Wang, Z. H.

Z. H. Wang, H. Liu, and Z. Huo, “Scale-invariant feature matching based on pairs of feature points,” Computer Vision, IET. 9(6), 789–796 (2015).
[Crossref]

Xue, F.

F. Xue, C. Jung, and J. Kim, “Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect,” Displays 42, 43–50 (2016).
[Crossref]

Yano, S.

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

Yong, J.

J. Yong, H. Sohn, and S. Lee, “Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images,” Proc. SPIE 8648, 86480M (2013).

Yoshizawa, M.

K. Sasaki, M. Yoshizawa, N. Sugita, and M. Abe, “Evaluation of visual fatigue while watching artificial three-dimensional image with vertical parallax,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2015), pp. 666–667.
[Crossref]

Yun, L.

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

Zhong, S. H.

S. H. Zhong, Y. Liu, and Q. C. Chen, “Visual orientation inhomogeneity based scale-invariant feature transform,” Expert Syst. Appl. 42(13), 5658–5667 (2015).
[Crossref]

Zhou, J.

J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
[Crossref]

Zou, F.

H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
[Crossref]

annals of telecommunications - annales des télécommunications (1)

M. Urvoy, M. Barkowsky, and P. L. Callet, “How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors,” annals of telecommunications - annales des télécommunications 68(11–12), 641–655 (2013).
[Crossref]

Computer Vision, IET. (1)

Z. H. Wang, H. Liu, and Z. Huo, “Scale-invariant feature matching based on pairs of feature points,” Computer Vision, IET. 9(6), 789–796 (2015).
[Crossref]

Displays (3)

F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25(2–3), 99–108 (2004).
[Crossref]

J. Li, M. Barkowsky, and P. L. Callet, “Visual discomfort of stereoscopic 3D videos: Influence of 3D motion,” Displays 35(1), 49–57 (2014).
[Crossref]

F. Xue, C. Jung, and J. Kim, “Disparity-based just-noticeable-difference model for perceptual stereoscopic video coding using depth of focus blur effect,” Displays 42, 43–50 (2016).
[Crossref]

Eizo Joho Media Gakkai Gijutsu Hokoku (1)

C. Shigeru, “3D consortium safety guidelines for popularization of human-friendly 3D,” Eizo Joho Media Gakkai Gijutsu Hokoku 30(34), 21–24 (2006).

Electron. Lett. (1)

H. Ren, Z. Su, C. Lv, and F. Zou, “Effect of region contrast on visual comfort of stereoscopic images,” Electron. Lett. 51(13), 983–985 (2015).
[Crossref]

EURASIP J. Image Video Process. (1)

J. Chen, J. Zhou, J. Sun, and A. C. Bovik, “3D visual discomfort prediction using low complexity disparity algorithms,” EURASIP J. Image Video Process. 2016(1), 23 (2016).
[Crossref]

Expert Syst. Appl. (1)

S. H. Zhong, Y. Liu, and Q. C. Chen, “Visual orientation inhomogeneity based scale-invariant feature transform,” Expert Syst. Appl. 42(13), 5658–5667 (2015).
[Crossref]

IEEE Trans. Broadcast (2)

C. Oh, B. Ham, S. Choi, and K. Sohn, “Visual Fatigue Relaxation for Stereoscopic Video via Nonlinear Disparity Remapping,” IEEE Trans. Broadcast 61(2), 142–153 (2015).
[Crossref]

W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: Visual Comfort,” IEEE Trans. Broadcast 57(2), 335–346 (2011).
[Crossref]

IEEE Trans. Circ. Syst. Video Tech. (1)

D. Kim and K. Sohn, “Visual fatigue prediction for stereoscopic image,” IEEE Trans. Circ. Syst. Video Tech. 21(2), 231–236 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

J. Park, H. Oh, S. Lee, and A. C. Bovik, “3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics,” IEEE Trans. Image Process. 24(3), 1101–1114 (2015).
[Crossref] [PubMed]

J. Disp. Technol. (2)

M. Emoto, T. Niida, and F. Okano, “Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television,” J. Disp. Technol. 1(2), 328–340 (2005).
[Crossref]

J. Shi, L. Yun, X. Huang, Y. Tai, and Z. Chen, “Visual Comfort Modeling for Disparity in 3D Contents Based on Weber–Fechner’s Law,” J. Disp. Technol. 10(12), 1001–1009 (2014).
[Crossref]

J. Electron. Imaging (1)

Y. J. Jung and S. Lee, “Visual comfort assessment metric based on salient object motion information in stereoscopic video,” J. Electron. Imaging 21(1), 59–79 (2012).

J. Soc. Inf. Disp. (1)

R. E. Patterson, “Human factors of 3-D displays,” J. Soc. Inf. Disp. 15(11), 861–871 (2007).
[Crossref]

J. Vis. (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Opt. Eng. (2)

D. Kim, S. K. Kim, and K. Sohn, “Effect of parallax distribution and crosstalk on visual comfort in parallax barrier autostereoscopic display,” Opt. Eng. 54(5), 053107 (2015).
[Crossref]

J. Choi, D. Kim, S. Choi, and C. Sohn, “Visual fatigue modeling and analysis for stereoscopic video,” Opt. Eng. 51(1), 017206 (2012).
[Crossref]

Opt. Express (3)

Proc. SPIE (4)

W. A. Ijsselsteijn, H. D. Ridder, and R. Hamberg, “Perceptual factors in stereoscopic displays. The effect of stereoscopic filming parameters on perceived quality and reported eyestrain,” Proc. SPIE 3299, 282–291 (1998).
[Crossref]

C. W. Tyler, L. T. Likova, V. Ramachandra, and S. Goma, “3D discomfort from vertical and torsional disparities in natural images,” Proc. SPIE 8291, 82910Q (2012).
[Crossref]

F. Speranza, W. J. Tam, and N. Hur, “Effect of disparity and motion on visual comfort of stereoscopic images,” Proc. SPIE 6055, 60550B (2006).
[Crossref]

J. Yong, H. Sohn, and S. Lee, “Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images,” Proc. SPIE 8648, 86480M (2013).

Other (11)

ITU-R BT.500–13, “Methodology for the subjective assessment of the quality of television pictures,” (2012).

IEEE-SA stereo video database [Online]. Available: http://grouper.ieee.org/groups/3dhf/

IVY LAB Stereoscopic video data set [Online]. Available: http://ivylab.kaist.ac.kr/demo/ivy3D-LocalMotion/index.htm

After Effects software [Online]. Available: http://supportdownloads.adobe.com/product.jsp?platform=Windows&product=13

ITU-R BT.500–11, “Methodology for the subjective assessment of the quality of television pictures,” (2002).

ITU-R BT.1438, “Subjective assessment of stereoscopic television pictures,” (2000).

SPSS software [Online]. Available: http://www.ibm.com/analytics/us/en/technology/spss/

C. Jung, H. Liu, and Y. Cui, “Visual comfort assessment for stereoscopic 3D images based on salient discomfort regions,” in Proceedings of IEEE Conference on Image Processing (IEEE, 2015), pp.4047–4051.
[Crossref]

K. Sasaki, M. Yoshizawa, N. Sugita, and M. Abe, “Evaluation of visual fatigue while watching artificial three-dimensional image with vertical parallax,” in Proceedings of IEEE Conference on Consumer Electronics (IEEE, 2015), pp. 666–667.
[Crossref]

F. Liu, Y. Niu, and H. Jin, “Keystone correction for stereoscopic cinematography,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012), pp. 1–7.

J. Li, “Methods for assessment and prediction of QoE, preference and visual discomfort in multimedia application with focus on S-3DTV,” Nantes University (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Comfortable ranges for horizontal disparity.
Fig. 2
Fig. 2 Geometric description of stereoscopic display.
Fig. 3
Fig. 3 Geometric description of calculating the motion (Ref [29], Fig. 10.3).
Fig. 4
Fig. 4 The zone of comfort in diopter (Ref [12], Fig. 23).
Fig. 5
Fig. 5 Shapes of the model1 and the model2 for horizontal disparity.
Fig. 6
Fig. 6 Disparity distribution of 25 stereoscopic videos in IEEE-SA stereo video database:(a) horizontal disparity and (b) vertical disparity.
Fig. 7
Fig. 7 Examples of two frames of experimental sequences with horizontal disparity of 2°: (a) Car1 and (b) Restaurant1.
Fig. 8
Fig. 8 Examples of two frames of experimental sequences with vertical disparity of 1°:(a) Car1 and (b) Restaurant1.
Fig. 9
Fig. 9 Experimental results of subjective and objective visual comfort evaluation scores for horizontal disparity: (a) the model1, (b) the model2. Error bars indicate the standard deviation of all evaluation scores under a given condition.
Fig. 10
Fig. 10 Experimental results of subjective and objective visual comfort evaluation scores for vertical disparity: (a) the model1, (b) the model2. Error bars indicate the standard deviation of all evaluation scores under a given condition.
Fig. 11
Fig. 11 Experimental results of subjective and objective visual comfort evaluation scores for motion: (a) planar motion, (b) depth motion and (c) composite motion. Error bars indicate the standard deviation of all evaluation scores under a given condition.
Fig. 12
Fig. 12 Experimental results of the whole evaluation method.

Tables (6)

Tables Icon

Table 1 Coefficients of two models for horizontal disparity.

Tables Icon

Table 2 Coefficients of two models for vertical disparity.

Tables Icon

Table 3 Coefficients of three models for motion.

Tables Icon

Table 4 Results of verification.

Tables Icon

Table 5 Regression coefficients for five tests

Tables Icon

Table 6 Performance comparisons of different visual comfort objective evaluation methods.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

d h = X r X l ,
d v = Y r Y l .
X s =( X i R h 2 ) width R h , Y s =( Y i R v 2 ) height R v .
X d = I X s I d sh ( x,y ) , Y d = I Y s I d sh ( x,y ) , Z d = d sh ( x,y )D d sh ( x,y )I ,
d sh ( x,y )= d h ( x,y ) width R h .
d ah ( x,y )=2[ arctan( I 2( D Z d ) )arctan( I 2D ) ].
d av ( x,y )= cos 1 ( a b | a || b | ) cos 1 ( c d | c || d | ) = cos 1 ( Y dl Y dr + D 2 Y dl 2 + D 2 Y dr 2 + D 2 ),
a = P el P dl =( X e I/2 X dl , Y e Y dl , Z e Z dl ),
b = P er P dr =( X e +I/2 X dr , Y e Y dr , Z e Z dr ),
c = P el ( P dl + P dr )/2 , d = P er ( P dl + P dr )/2 .
M 2 D x ( x r k , y r k ,k )= x r k+1 x r k .
M 3 D x ( x r k , y r k ,k )= M 2 D x ( x r k , y r k ,k ) 1 2 M 3 D d ( x r k , y r k ,k ),
M 3 D y ( x r k , y r k ,k )= M 2 D y ( x r k , y r k ,k )= y r k+1 y r k ,
M 3 D d ( x r k , y r k ,k )=d( x r k + M 2 D x ( x r k , y r k ,k ), y r k + M 2 D y ( x r k , y r k ,k ),k+1 )d( x r k , y r k ,k ) =d( x r k+1 , y r k+1 ,k+1 )d( x r k , y r k ,k ).
m k,x =f( cos 1 ( e k+1 x,z e k x,z | e k+1 x,z || e k x,z | ) 1 2f m k,z ),
m k,y =f cos 1 ( e k+1 y,z e k y,z | e k+1 y,z || e k y,z | ),
m k,z =2f[ arctan( I 2( D Z d k+1 ) )arctan( I 2( D Z d k ) ) ],
e k = P r k P er =( x r k ( x e I/2 ), y r k y e , z r k z e ),
e k x,z =( x r k ( x e I/2 ), z r k z e ),
e k y,z =( y r k y e , z r k z e ),
Z d k = d sh k ( x,y )D d sh k ( x,y )I .
m planar ( x,y )= ( m k,x ) 2 + ( m k,y ) 2 .
m depth ( x,y )=| m k,z |.
w dh 1 ( x,y )={ exp( th| d ah ( x,y ) | )| d ah ( x,y ) |th 10<| d ah ( x,y ) |<th ,
w dh 2 ( x,y )={ exp( d ah ( x,y )t h n ) d ah ( x,y )t h n exp( t h p d ah ( x,y ) ) d ah ( x,y )t h p 1t h n < d ah ( x,y )<t h p ,
t h n =2[ arctan( I( 1 T n D ) 2× m n D )arctan( I 2D ) ],
t h p =2[ arctan( I( 1+ T p D ) 2× m p D )arctan( I 2D ) ].
w dv 1 ( x,y )=exp( d av ( x,y ) ),
w dv 2 ( x,y )={ exp( t h v | d av ( x,y ) | )| d av ( x,y ) |t h v 10<| d av ( x,y ) |<t h v .
w m ( x,y )={ exp( m planar ( x,y ) σ 1 )planarmotion exp( m depth ( x,y ) σ 2 )depthmotion exp( m planar ( x,y )+ m depth ( x,y ) σ 3 )compositemotion .
v c k = 1 N i=1 N [ a w dh i ( x,y )+b w dv i ( x,y )+c ] .
VC= 1 M k=1 M v c k ,
v c k = 1 N i=1 N [ α w dh i ( x,y )+β w dv i ( x,y )+γ w m i ( x,y )+δ ] .
{ ( P i + Q i )/ T i >5% | P i Q i |/ ( P i + Q i )<30% .

Metrics