Abstract

We present a detailed study on the generation of widely tunable visible light through four wave mixing in specifically designed micro-structured fibers. The fiber’s properties are optimized for an efficient conversion to the visible and near infrared with a combined tunability from 620 to 910 nm of a picosecond Yb-doped tunable source for biomedical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann
Opt. Lett. 34(22) 3499-3501 (2009)

Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation

Vincent Tombelaine, Alexis Labruyère, Jens Kobelke, Kay Schuster, Volker Reichel, Philippe Leproux, Vincent Couderc, Raphaël Jamier, and Hartmut Bartelt
Opt. Express 17(18) 15392-15401 (2009)

Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber

K. K. Chow, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto
Opt. Express 15(23) 15418-15423 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
    [Crossref]
  2. T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
    [Crossref] [PubMed]
  3. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11(1), 92–101 (1994).
    [Crossref]
  4. R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
    [Crossref]
  5. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  6. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
    [Crossref] [PubMed]
  7. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  8. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19(4), 765–771 (2002).
    [Crossref]
  9. C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express 20(22), 24957–24965 (2012).
    [Crossref] [PubMed]
  10. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
    [Crossref] [PubMed]
  11. R. Royon, J. Lhermite, G. Machinet, L. Sarger, and E. Cormier, “Continuously tunable sub-ns ytterbium-doped MOPA system for frequency conversion,” in CLEO/Europe and EQEC 2011 Conference Digest 2011, p. CJ_P13.
  12. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [Crossref] [PubMed]
  13. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express 18(15), 16193–16205 (2010).
    [Crossref] [PubMed]
  14. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B 29(8), 1959–1967 (2012).
    [Crossref]
  15. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21(6), 6777–6782 (2013).
    [Crossref] [PubMed]
  16. J. Yuan, X. Sang, Q. Wu, G. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrell, and L. Hou, “Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber,” Opt. Lett. 38(24), 5288–5291 (2013).
    [Crossref] [PubMed]
  17. J. R. Peñano, D. F. Gordon, and B. Hafizi, “Generation of mid-IR and visible radiation from four-wave amplification of ultrashort laser pulses in transparent dielectrics,” J. Opt. Soc. Am. B 30(3), 708–716 (2013).
    [Crossref]
  18. G. Agrawal, Applications of Non-Linear Fiber Optics, 5th ed. (Academic Press, 2012).
  19. M. Delgado-Pinar, Y. Li, D. M. Bird, T. A. Birks, and W. J. Wadsworth, “Third Harmonic Generation in Uniform Fibre Nanotapers via Intermodal Coupling,” in Conference on Lasers and Electro-Optics2010, p. CWL4.
    [Crossref]
  20. C. J. McKinstrie and S. Radic, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27(13), 1138–1140 (2002).
    [Crossref] [PubMed]
  21. S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
    [Crossref]
  22. M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
    [Crossref]
  23. www.fiberdesk.com
  24. A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
    [Crossref]
  25. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
    [Crossref] [PubMed]
  26. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28(20), 1879–1881 (2003).
    [Crossref] [PubMed]
  27. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
    [Crossref] [PubMed]
  28. F. Kaiser, P. Vergyris, D. Aktas, C. Babin, L. Labonté, and S. Tanzilli, “Quantum enhancement of accuracy and precision in optical interferometry,” arXiv:1701.01621 [quant-ph].

2015 (2)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

2013 (4)

2012 (3)

2011 (2)

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

2010 (1)

2009 (1)

2005 (2)

2004 (1)

2003 (1)

2002 (3)

1994 (1)

1986 (1)

1975 (1)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
[Crossref]

Babin, S. A.

Barviau, B.

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Baumgartl, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

Beck, G.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

Biancalana, F.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
[Crossref]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[Crossref] [PubMed]

Bigot, L.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

Bird, D. M.

M. Delgado-Pinar, Y. Li, D. M. Bird, T. A. Birks, and W. J. Wadsworth, “Third Harmonic Generation in Uniform Fibre Nanotapers via Intermodal Coupling,” in Conference on Lasers and Electro-Optics2010, p. CWL4.
[Crossref]

Birks, T.

Birks, T. A.

M. Delgado-Pinar, Y. Li, D. M. Bird, T. A. Birks, and W. J. Wadsworth, “Third Harmonic Generation in Uniform Fibre Nanotapers via Intermodal Coupling,” in Conference on Lasers and Electro-Optics2010, p. CWL4.
[Crossref]

Bouwmans, G.

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Chen, A. Y. H.

Coen, S.

Cormier, E.

Delgado-Pinar, M.

M. Delgado-Pinar, Y. Li, D. M. Bird, T. A. Birks, and W. J. Wadsworth, “Third Harmonic Generation in Uniform Fibre Nanotapers via Intermodal Coupling,” in Conference on Lasers and Electro-Optics2010, p. CWL4.
[Crossref]

Droques, M.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Dudley, J. M.

Dupriez, P.

Eggleton, B. J.

Farrell, G.

Folkenberg, J. R.

Golovchenko, E. A.

Gordon, D. F.

Gottschall, T.

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

Grossard, N.

Habert, R.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

Hafizi, B.

Han, Y.

Hansen, K. P.

Harvey, J. D.

Hou, L.

Jauregui, C.

Joly, N.

Kablukov, S. I.

Knight, J.

Knight, J. C.

Koshiba, M.

Kudlinski, A.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Kuhlmey, B. T.

Lavoute, L.

Leonhardt, R.

Lhermite, J.

Li, Y.

M. Delgado-Pinar, Y. Li, D. M. Bird, T. A. Birks, and W. J. Wadsworth, “Third Harmonic Generation in Uniform Fibre Nanotapers via Intermodal Coupling,” in Conference on Lasers and Electro-Optics2010, p. CWL4.
[Crossref]

Limpert, J.

Maillotte, H.

Martijn de Sterke, C.

McKinstrie, C. J.

McPhedran, R. C.

Meyer, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

Mitschke, F. M.

Mollenauer, L. F.

Mortensen, N. A.

Murdoch, S. G.

Mussot, A.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Nielsen, M. D.

Nodop, D.

Peñano, J. R.

Pilipetskii, A. N.

Podlipensky, A.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
[Crossref]

Popp, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

Provino, L.

Radic, S.

Royon, R.

Russell, P.

Russell, P. St. J.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
[Crossref]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
[Crossref] [PubMed]

Saitoh, K.

Sang, X.

Sarger, L.

Schimpf, D.

Schmitt, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

Stark, S. P.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
[Crossref]

Steinmetz, A.

Stolen, R.

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
[Crossref]

Tünnermann, A.

Wadsworth, W.

Wadsworth, W. J.

Wang, K.

Windeler, R. S.

Wong, G. K. L.

Wu, Q.

Yan, B.

Yu, C.

Yuan, J.

Zhou, G.

Zlobina, E. A.

IEEE J. Quantum Electron. (1)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Photonics Rev. (1)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

Opt. Express (7)

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21(6), 6777–6782 (2013).
[Crossref] [PubMed]

C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, “High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers,” Opt. Express 20(22), 24957–24965 (2012).
[Crossref] [PubMed]

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
[Crossref] [PubMed]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
[Crossref] [PubMed]

L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express 18(15), 16193–16205 (2010).
[Crossref] [PubMed]

Opt. Lett. (7)

B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
[Crossref] [PubMed]

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28(20), 1879–1881 (2003).
[Crossref] [PubMed]

C. J. McKinstrie and S. Radic, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27(13), 1138–1140 (2002).
[Crossref] [PubMed]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
[Crossref] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[Crossref] [PubMed]

J. Yuan, X. Sang, Q. Wu, G. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrell, and L. Hou, “Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber,” Opt. Lett. 38(24), 5288–5291 (2013).
[Crossref] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
[Crossref] [PubMed]

Phys. Rev. A (1)

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
[Crossref]

Other (5)

www.fiberdesk.com

F. Kaiser, P. Vergyris, D. Aktas, C. Babin, L. Labonté, and S. Tanzilli, “Quantum enhancement of accuracy and precision in optical interferometry,” arXiv:1701.01621 [quant-ph].

G. Agrawal, Applications of Non-Linear Fiber Optics, 5th ed. (Academic Press, 2012).

M. Delgado-Pinar, Y. Li, D. M. Bird, T. A. Birks, and W. J. Wadsworth, “Third Harmonic Generation in Uniform Fibre Nanotapers via Intermodal Coupling,” in Conference on Lasers and Electro-Optics2010, p. CWL4.
[Crossref]

R. Royon, J. Lhermite, G. Machinet, L. Sarger, and E. Cormier, “Continuously tunable sub-ns ytterbium-doped MOPA system for frequency conversion,” in CLEO/Europe and EQEC 2011 Conference Digest 2011, p. CJ_P13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Influence of the a) nonlinearity γ P p , b) zero-dispersion wavelength λZD, and higher order dispersion c) β3, d) β4, and e) β5 on the chromatic dispersion D (a.1 to e.1) and the d-FWM tuning curves λs,i = f (λ p) (a.2 to e.2) for the signal λs < λp (solid line) and idler λi > λp (dotted line). For each subset a single parameter is varied around the initial set (γP p = 10 m−1, λZD = 1075 nm, β3 = 7 × 10−2 ps3.km−1, β4 = −1.1 × 10−4 ps4.km−1, β5 = 3.5 × 10−7 ps5.km−1) of parameters. The green shaded area marks the actual pump tunability range.
Fig. 2
Fig. 2 Microscope images of the cross-section of the A and E PCFs fabricated.
Fig. 3
Fig. 3 Schematic of the tunable source.
Fig. 4
Fig. 4 (a) d-FWM tuning curves (maximum of the signal spectra) on the signal branch (anti-Stokes) for the six fibers tested (PCF-A to -E and Ref PCF, see text for details), and (b) signal spectra for different pump wavelength (obtained with Ref PCF).
Fig. 5
Fig. 5 Experimental (symbols) and simulated (lines) signal output average power at different pump power and wavelength vs. (a) pump average power P p and (b) pump central wavelength λ p (: 1020 nm, : 1030 nm, : 1040 nm, and : 1050 nm for Ref-PCF. The idler (red) and signal (blue) ranges corresponding to the pump wavelength are given atop.
Fig. 6
Fig. 6 Simulation of the d-FWM spectrum build-up along the propagation distance z in the PCF-E.

Tables (3)

Tables Icon

Table 1 Parameters used in the calculation

Tables Icon

Table 2 Fibers Characteristics: Geometrical factors, MFA and Nonlinear coefficient

Tables Icon

Table 3 Fibers characteristics: dispersion parameters and tuning slopes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β (s) ( ω s )+ β (i) ( ω i )2 β (p) ( ω p )+ β NL =0
β (m) ( ω m ) β 0 + β 1 ( ω m ω ZD )+ 1 2 β 2 ( ω m ω ZD ) 2 + 1 3! β 3 ( ω m ω ZD ) 3 +
Ω( ω p )= ( ( q+ q 2 4p β NL )/ 2p ) 1/2
A z = n1 β n i n n! n T n A + α( ω ) 2 A ˜ (ω) e iωT dω+iγ(1+iτ T )(A R( t ) | A( T t ) | 2 d t )

Metrics