Abstract

Fullerene in the plasmon fullerene cavity is utilized to propagate plasmon energy in order to break the confinement of the plasmonic coupling effect, which relies on the influential near-field optical region. It acts as a plasmonic inductor for coupling gold nano-islands to the gold film; the separation distances of the upper and lower layers are longer than conventional plasmonic cavities. This coupling effect causes the discrete and continuum states to cooperate together in a cavity and produces asymmetric curve lines in the spectra, producing a hybridized resonance. The effect brings about a bright and saturated displaying film with abundant visible colors. In addition, the reflection spectrum is nearly omnidirectional, shifting by only 5% even when the incident angle changes beyond ± 60°. These advantages allow plasmon fullerene cavities to be applied to reflectors, color filters, visible chromatic sensors, and large-area display.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflective low-sideband plasmonic structural colors

Jun Zheng, Zhi-Cheng Ye, and Zheng-Ming Sheng
Opt. Mater. Express 6(2) 381-387 (2016)

Optical interactions in a plasmonic particle coupled to a metallic film

Gaëtan Lévêque and Olivier J. F. Martin
Opt. Express 14(21) 9971-9981 (2006)

Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators

Zhiqin Li, Ren Sun, Chi Zhang, Mingjie Wan, Ping Gu, Qi Shen, Zhuo Chen, and Zhenling Wang
Opt. Express 24(17) 19895-19904 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  2. M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
    [Crossref] [PubMed]
  3. A. Dasgupta and G. V. Kumar, “Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity,” Appl. Opt. 51(11), 1688–1693 (2012).
    [Crossref] [PubMed]
  4. F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
    [Crossref] [PubMed]
  5. Z. Shen, L. Su, and Y.-C. Shen, “Vertically-oriented nanoparticle dimer based on focused plasmonic trapping,” Opt. Express 24(14), 16052–16065 (2016).
    [Crossref] [PubMed]
  6. X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
    [Crossref] [PubMed]
  7. C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
    [Crossref] [PubMed]
  8. G. Jia, H. Dai, X. Mu, C. Guo, and C. Liu, “Implantation-synthesized Cu/Cu–Zn core/shell nanoparticles in SiO2 and their optical properties,” Opt. Mater. Express 5(5), 1156–1167 (2015).
    [Crossref]
  9. Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4: Nd/Yb/Ho@ SiO2@ Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942–1955 (2016).
    [Crossref]
  10. S. Gaponenko, H. V. Demir, C. Seassal, and U. Woggon, “Colloidal nanophotonics: the emerging technology platform,” Opt. Express 24(2), A430–A433 (2016).
    [Crossref] [PubMed]
  11. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  12. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
    [Crossref] [PubMed]
  13. D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
    [Crossref] [PubMed]
  14. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref] [PubMed]
  15. F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
    [Crossref] [PubMed]
  16. S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
    [Crossref] [PubMed]
  17. D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, “Plasmonic enhancement of electroluminescence,” AIP Adv. 8(1), 015324 (2018).
    [Crossref]
  18. T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
    [Crossref]
  19. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
    [Crossref]
  20. M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
    [Crossref] [PubMed]
  21. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  22. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
    [Crossref] [PubMed]
  23. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
    [Crossref] [PubMed]
  24. C. I. Yeo, J. H. Choi, J. B. Kim, J. C. Lee, and Y. T. Lee, “Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si: H solar cells,” Opt. Mater. Express 4(2), 346–351 (2014).
    [Crossref]
  25. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
    [Crossref] [PubMed]
  26. C. Wang and D. Astruc, “Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion,” Chem. Soc. Rev. 43(20), 7188–7216 (2014).
    [Crossref] [PubMed]
  27. Z. Zhang, T. Deckert-Gaudig, and V. Deckert, “Label-free monitoring of plasmonic catalysis on the nanoscale,” Analyst (Lond.) 140(13), 4325–4335 (2015).
    [Crossref] [PubMed]
  28. D. Si, K. Feng, K. Kitamura, A. Liu, L. Pan, W. Li, T. Liu, Y. Huang, and X. Liu, “Plasmon-driven surface catalysis on photochemically deposited-based SERS substrates,” Appl. Opt. 55(30), 8468–8471 (2016).
    [Crossref] [PubMed]
  29. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
    [Crossref] [PubMed]
  30. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  31. X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
    [Crossref] [PubMed]
  32. N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194–204 (2013).
    [Crossref]
  33. O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).
  34. A. V. Nikolaev and K. H. Michel, “Molecular terms, magnetic moments, and optical transitions of molecular ion C60m±,” J. Chem. Phys. 117(10), 4761–4776 (2002).
    [Crossref]
  35. Z. Shuai and J.-L. Brédas, “Magnetic dipole and electric quadrupole contributions to second‐harmonic generation in C60—A valence effective hamiltonian study,” Adv. Mater. 6(6), 486–488 (1994).
    [Crossref]
  36. R. A. Ganeev, C. Hutchison, T. Witting, F. Frank, S. Weber, W. A. Okell, E. Fiordilino, D. Cricchio, F. Persico, A. Zaïr, J. W. G. Tisch, and J. P. Marangos, “High-order harmonic generation in fullerenes using few-and multi-cycle pulses of different wavelengths,” J. Opt. Soc. Am. B 30(1), 7–12 (2013).
    [Crossref]
  37. R. Eder, A. Janner, and G. A. Sawatzky, “Theory of nonlinear optical response of excitons in solid C60,” Phys. Rev. B Condens. Matter 53(19), 12786–12793 (1996).
    [Crossref] [PubMed]
  38. I. B. Zakharova, O. E. Kvyatkovskiĭ, G. M. Ermolaeva, N. G. Spitsyna, and V. B. Shilov, “Nonlinear optical properties of fullerene-porphyrin complexes,” J. Opt. Technol. 77(1), 1–5 (2010).
    [Crossref]
  39. É. M. Shpilevskiĭ and A. D. Zamkovets, “Plasmon resonance in gold-fullerene nanostructures,” J. Opt. Technol 75(5), 298–300 (2008).
    [Crossref]
  40. V. Despoja and D. J. Mowbray, “Using surface plasmonics to turn on fullerene’s dark excitons,” Phys. Rev. B 89(19), 195433 (2014).
    [Crossref]
  41. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
    [Crossref]
  42. F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
    [Crossref] [PubMed]
  43. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
    [Crossref] [PubMed]
  44. J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47(4), 399–459 (1984).
    [Crossref]
  45. T. Ogawa and Y. Kanemitsu, Optical Properties of Low-Dimensional Materials (Word Scientific, 1995), Chap. 7.
  46. S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
    [Crossref] [PubMed]
  47. Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
    [Crossref] [PubMed]
  48. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  49. N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
    [Crossref] [PubMed]
  50. M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
    [Crossref] [PubMed]
  51. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [Crossref] [PubMed]
  52. D. Zhu, M. Bosman, and J. K. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
    [Crossref] [PubMed]
  53. L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520(1), 501–509 (2011).
    [Crossref]
  54. S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
    [Crossref]

2018 (1)

D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, “Plasmonic enhancement of electroluminescence,” AIP Adv. 8(1), 015324 (2018).
[Crossref]

2017 (2)

O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).

S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
[Crossref] [PubMed]

2016 (8)

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

S. Gaponenko, H. V. Demir, C. Seassal, and U. Woggon, “Colloidal nanophotonics: the emerging technology platform,” Opt. Express 24(2), A430–A433 (2016).
[Crossref] [PubMed]

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4: Nd/Yb/Ho@ SiO2@ Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942–1955 (2016).
[Crossref]

Z. Shen, L. Su, and Y.-C. Shen, “Vertically-oriented nanoparticle dimer based on focused plasmonic trapping,” Opt. Express 24(14), 16052–16065 (2016).
[Crossref] [PubMed]

D. Si, K. Feng, K. Kitamura, A. Liu, L. Pan, W. Li, T. Liu, Y. Huang, and X. Liu, “Plasmon-driven surface catalysis on photochemically deposited-based SERS substrates,” Appl. Opt. 55(30), 8468–8471 (2016).
[Crossref] [PubMed]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

2015 (10)

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Z. Zhang, T. Deckert-Gaudig, and V. Deckert, “Label-free monitoring of plasmonic catalysis on the nanoscale,” Analyst (Lond.) 140(13), 4325–4335 (2015).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

G. Jia, H. Dai, X. Mu, C. Guo, and C. Liu, “Implantation-synthesized Cu/Cu–Zn core/shell nanoparticles in SiO2 and their optical properties,” Opt. Mater. Express 5(5), 1156–1167 (2015).
[Crossref]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

2014 (7)

C. I. Yeo, J. H. Choi, J. B. Kim, J. C. Lee, and Y. T. Lee, “Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si: H solar cells,” Opt. Mater. Express 4(2), 346–351 (2014).
[Crossref]

D. Zhu, M. Bosman, and J. K. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
[Crossref] [PubMed]

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
[Crossref] [PubMed]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

C. Wang and D. Astruc, “Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion,” Chem. Soc. Rev. 43(20), 7188–7216 (2014).
[Crossref] [PubMed]

V. Despoja and D. J. Mowbray, “Using surface plasmonics to turn on fullerene’s dark excitons,” Phys. Rev. B 89(19), 195433 (2014).
[Crossref]

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

2013 (5)

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

R. A. Ganeev, C. Hutchison, T. Witting, F. Frank, S. Weber, W. A. Okell, E. Fiordilino, D. Cricchio, F. Persico, A. Zaïr, J. W. G. Tisch, and J. P. Marangos, “High-order harmonic generation in fullerenes using few-and multi-cycle pulses of different wavelengths,” J. Opt. Soc. Am. B 30(1), 7–12 (2013).
[Crossref]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194–204 (2013).
[Crossref]

2012 (5)

A. Dasgupta and G. V. Kumar, “Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity,” Appl. Opt. 51(11), 1688–1693 (2012).
[Crossref] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

2011 (2)

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520(1), 501–509 (2011).
[Crossref]

2010 (2)

I. B. Zakharova, O. E. Kvyatkovskiĭ, G. M. Ermolaeva, N. G. Spitsyna, and V. B. Shilov, “Nonlinear optical properties of fullerene-porphyrin complexes,” J. Opt. Technol. 77(1), 1–5 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2008 (2)

É. M. Shpilevskiĭ and A. D. Zamkovets, “Plasmon resonance in gold-fullerene nanostructures,” J. Opt. Technol 75(5), 298–300 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

2005 (1)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

2004 (2)

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

2002 (2)

A. V. Nikolaev and K. H. Michel, “Molecular terms, magnetic moments, and optical transitions of molecular ion C60m±,” J. Chem. Phys. 117(10), 4761–4776 (2002).
[Crossref]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

1996 (1)

R. Eder, A. Janner, and G. A. Sawatzky, “Theory of nonlinear optical response of excitons in solid C60,” Phys. Rev. B Condens. Matter 53(19), 12786–12793 (1996).
[Crossref] [PubMed]

1994 (1)

Z. Shuai and J.-L. Brédas, “Magnetic dipole and electric quadrupole contributions to second‐harmonic generation in C60—A valence effective hamiltonian study,” Adv. Mater. 6(6), 486–488 (1994).
[Crossref]

1984 (1)

J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47(4), 399–459 (1984).
[Crossref]

Aizpurua, J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Ajayan, P. M.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Alù, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Astruc, D.

C. Wang and D. Astruc, “Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion,” Chem. Soc. Rev. 43(20), 7188–7216 (2014).
[Crossref] [PubMed]

Atwater, H. A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Bach, U.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Bawendi, M. G.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Berezovska, N. I.

O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).

Bosman, M.

Bowman, R. W.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Brédas, J.-L.

Z. Shuai and J.-L. Brédas, “Magnetic dipole and electric quadrupole contributions to second‐harmonic generation in C60—A valence effective hamiltonian study,” Adv. Mater. 6(6), 486–488 (1994).
[Crossref]

Brick, D.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Brown, A. M.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Bulovic, V.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Byers, C. P.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Catchpole, K. R.

Cerjan, B.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Chang, C. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chang, W.-S.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Chen, H. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chen, M.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Chen, Y. L.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chiang, H.-P.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Chilkoti, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Choi, J. H.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chu, C. H.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chu, N.-N.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cricchio, D.

Dai, H.

Dasgupta, A.

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Deckert, V.

Z. Zhang, T. Deckert-Gaudig, and V. Deckert, “Label-free monitoring of plasmonic catalysis on the nanoscale,” Analyst (Lond.) 140(13), 4325–4335 (2015).
[Crossref] [PubMed]

Deckert-Gaudig, T.

Z. Zhang, T. Deckert-Gaudig, and V. Deckert, “Label-free monitoring of plasmonic catalysis on the nanoscale,” Analyst (Lond.) 140(13), 4325–4335 (2015).
[Crossref] [PubMed]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Demir, H. V.

Despoja, V.

V. Despoja and D. J. Mowbray, “Using surface plasmonics to turn on fullerene’s dark excitons,” Phys. Rev. B 89(19), 195433 (2014).
[Crossref]

Dong, Z.

Dubertret, B.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Eder, R.

R. Eder, A. Janner, and G. A. Sawatzky, “Theory of nonlinear optical response of excitons in solid C60,” Phys. Rev. B Condens. Matter 53(19), 12786–12793 (1996).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Erdem, T.

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

Ermolaeva, G. M.

Evans, S. D.

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

Everitt, H. O.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Eychmuller, A.

Fang, Z.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Feng, K.

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Fiordilino, E.

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Frank, F.

Fujita, K.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Ganeev, R. A.

Gao, L.

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520(1), 501–509 (2011).
[Crossref]

Gaponenko, S.

Gaponenko, S. V.

Gaponik, N.

Giessen, H.

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194–204 (2013).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gong, Y.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Gottheim, S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Guler, U.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Guo, C.

Guo, L.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Guzatov, D. V.

D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, “Plasmonic enhancement of electroluminescence,” AIP Adv. 8(1), 015324 (2018).
[Crossref]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Halas, N. J.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hanbücken, M.

J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47(4), 399–459 (1984).
[Crossref]

He, Y. J.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Herrmann, L. O.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Ho, J.

Hoener, B. S.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Hoggard, A.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Hou, M.

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

Hsiao, M.-K.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, D.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Huang, D.-W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, H. W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

D. Si, K. Feng, K. Kitamura, A. Liu, L. Pan, W. Li, T. Liu, Y. Huang, and X. Liu, “Plasmon-driven surface catalysis on photochemically deposited-based SERS substrates,” Appl. Opt. 55(30), 8468–8471 (2016).
[Crossref] [PubMed]

Huang, Y.-W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Hucknall, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Hutchison, C.

Ithurria, S.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Janner, A.

R. Eder, A. Janner, and G. A. Sawatzky, “Theory of nonlinear optical response of excitons in solid C60,” Phys. Rev. B Condens. Matter 53(19), 12786–12793 (1996).
[Crossref] [PubMed]

Jia, G.

Jokerst, N. M.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Karg, M.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Kershaw, S. V.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Kim, J. B.

King, N. S.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Kitamura, K.

Kozachenko, V. V.

O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).

Kristensen, A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

Kumar, G. V.

Kvyatkovskii, O. E.

Landes, C. F.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Lang, X.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Lavrinenko, A. V.

Lee, G. P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Lee, J. C.

Lee, Y. T.

Lemarchand, F.

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520(1), 501–509 (2011).
[Crossref]

Lequime, M.

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520(1), 501–509 (2011).
[Crossref]

Li, B.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Li, J.

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, W.

Li, Z.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

Liakhov, Y. F.

O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).

Liang, X.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Lin, W. C.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Link, S.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Liu, A.

Liu, C.

Liu, D.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Liu, L.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Liu, R.-S.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Liu, T.

Liu, X.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, L.

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Marangos, J. P.

Meng, X.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Mertens, J.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Michel, K. H.

A. V. Nikolaev and K. H. Michel, “Molecular terms, magnetic moments, and optical transitions of molecular ion C60m±,” J. Chem. Phys. 117(10), 4761–4776 (2002).
[Crossref]

Mock, J. J.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

Mowbray, D. J.

V. Despoja and D. J. Mowbray, “Using surface plasmonics to turn on fullerene’s dark excitons,” Phys. Rev. B 89(19), 195433 (2014).
[Crossref]

Mu, X.

Mulvaney, P.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Mutlugun, E.

Ng, R. J. H.

Nikolaev, A. V.

A. V. Nikolaev and K. H. Michel, “Molecular terms, magnetic moments, and optical transitions of molecular ion C60m±,” J. Chem. Phys. 117(10), 4761–4776 (2002).
[Crossref]

Nordlander, P.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Okell, W. A.

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Ozel, T.

Pan, L.

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Persico, F.

Polman, A.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Prodan, E.

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Pukenas, L.

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Qin, Y.

Qiu, J.

Ramakrishna, S.

Reineck, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Rezaei, S. D.

Ringe, E.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Rogach, A. L.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Sanders, A.

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

Sawatzky, G. A.

R. Eder, A. Janner, and G. A. Sawatzky, “Theory of nonlinear optical response of excitons in solid C60,” Phys. Rev. B Condens. Matter 53(19), 12786–12793 (1996).
[Crossref] [PubMed]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Seassal, C.

Shalaev, V. M.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Shao, L.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Sheldon, M. T.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Shen, Y.-C.

Shen, Z.

Shi, J.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Shi, Y.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Shilov, V. B.

Shirasaki, Y.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Shpilevskii, É. M.

É. M. Shpilevskiĭ and A. D. Zamkovets, “Plasmon resonance in gold-fullerene nanostructures,” J. Opt. Technol 75(5), 298–300 (2008).
[Crossref]

Shuai, Z.

Z. Shuai and J.-L. Brédas, “Magnetic dipole and electric quadrupole contributions to second‐harmonic generation in C60—A valence effective hamiltonian study,” Adv. Mater. 6(6), 486–488 (1994).
[Crossref]

Si, D.

Sigle, D. O.

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Smith, D. R.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Spiller, G. D. T.

J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47(4), 399–459 (1984).
[Crossref]

Spitsyna, N. G.

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Strohfeldt, N.

Su, L.

Sun, G.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Supran, G. J.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Swearer, D. F.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Tan, E.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Tanaka, K.

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Tisch, J. W. G.

Tittl, A.

Tsai, D. P.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Tseng, M. L.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Tserkezis, C.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

van de Groep, J.

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

Venables, J. A.

J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47(4), 399–459 (1984).
[Crossref]

Wang, C.

C. Wang and D. Astruc, “Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion,” Chem. Soc. Rev. 43(20), 7188–7216 (2014).
[Crossref] [PubMed]

Wang, J.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Weber, S.

Wen, F.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Witting, T.

Woggon, U.

Wolter, S. D.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Xie, Z.

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

Xu, X.

Yang, H. Y.

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

Yang, J. K.

Yang, J. K. W.

Yang, X.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Yang, Y.

Yeo, C. I.

Yeshchenko, O. A.

O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).

Yin, P.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Yorulmaz, M.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

You, T.

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Yu, H.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Zaïr, A.

Zakharova, I. B.

Zamkovets, A. D.

É. M. Shpilevskiĭ and A. D. Zamkovets, “Plasmon resonance in gold-fullerene nanostructures,” J. Opt. Technol 75(5), 298–300 (2008).
[Crossref]

Zhang, H.

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Zhang, Y.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Zhang, Z.

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

Z. Zhang, T. Deckert-Gaudig, and V. Deckert, “Label-free monitoring of plasmonic catalysis on the nanoscale,” Analyst (Lond.) 140(13), 4325–4335 (2015).
[Crossref] [PubMed]

Zhao, H.

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

Zhao, N.

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, D.

Zhu, D.

Zhu, X.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

Zhukovsky, S. V.

Zu, S.

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

ACS Nano (6)

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

D. O. Sigle, J. Mertens, L. O. Herrmann, R. W. Bowman, S. Ithurria, B. Dubertret, Y. Shi, H. Y. Yang, C. Tserkezis, J. Aizpurua, and J. J. Baumberg, “Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities,” ACS Nano 9(1), 825–830 (2015).
[Crossref] [PubMed]

M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, “Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures,” ACS Nano 8(8), 8208–8216 (2014).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” ACS Nano 9(11), 10628–10636 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Z. Shuai and J.-L. Brédas, “Magnetic dipole and electric quadrupole contributions to second‐harmonic generation in C60—A valence effective hamiltonian study,” Adv. Mater. 6(6), 486–488 (1994).
[Crossref]

Adv. Opt. Mater. (1)

S. Zu, B. Li, Y. Gong, Z. Li, P. M. Ajayan, and Z. Fang, “Active control of plasmon–exciton coupling in MoS2–Ag hybrid nanostructures,” Adv. Opt. Mater. 4(10), 1463–1469 (2016).
[Crossref]

AIP Adv. (1)

D. V. Guzatov, S. V. Gaponenko, and H. V. Demir, “Plasmonic enhancement of electroluminescence,” AIP Adv. 8(1), 015324 (2018).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Analyst (Lond.) (1)

Z. Zhang, T. Deckert-Gaudig, and V. Deckert, “Label-free monitoring of plasmonic catalysis on the nanoscale,” Analyst (Lond.) 140(13), 4325–4335 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Chem. Soc. Rev. (1)

C. Wang and D. Astruc, “Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion,” Chem. Soc. Rev. 43(20), 7188–7216 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[Crossref] [PubMed]

J. Chem. Phys. (1)

A. V. Nikolaev and K. H. Michel, “Molecular terms, magnetic moments, and optical transitions of molecular ion C60m±,” J. Chem. Phys. 117(10), 4761–4776 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol (1)

É. M. Shpilevskiĭ and A. D. Zamkovets, “Plasmon resonance in gold-fullerene nanostructures,” J. Opt. Technol 75(5), 298–300 (2008).
[Crossref]

J. Opt. Technol. (1)

Nano Lett. (4)

M. Yorulmaz, A. Hoggard, H. Zhao, F. Wen, W.-S. Chang, N. J. Halas, P. Nordlander, and S. Link, “Absorption spectroscopy of an individual Fano cluster,” Nano Lett. 16(10), 6497–6503 (2016).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4(11), 2209–2213 (2004).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Nanooptics of molecular-shunted plasmonic nanojunctions,” Nano Lett. 15(1), 669–674 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Erdem and H. V. Demir, “Semiconductor nanocrystals as rare-earth alternatives,” Nat. Photonics 5(3), 126 (2011).
[Crossref]

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics 7(1), 13–23 (2013).
[Crossref]

Nature (1)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (1)

X. Liang, T. You, D. Liu, X. Lang, E. Tan, J. Shi, P. Yin, and L. Guo, “Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS,” Phys. Chem. Chem. Phys. 17(15), 10176–10181 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

V. Despoja and D. J. Mowbray, “Using surface plasmonics to turn on fullerene’s dark excitons,” Phys. Rev. B 89(19), 195433 (2014).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. Eder, A. Janner, and G. A. Sawatzky, “Theory of nonlinear optical response of excitons in solid C60,” Phys. Rev. B Condens. Matter 53(19), 12786–12793 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref] [PubMed]

Plasmonics (1)

O. A. Yeshchenko, V. V. Kozachenko, N. I. Berezovska, and Y. F. Liakhov, “Photoluminescence of Fullerene C60 Thin Film in Plasmon-Coupled Monolayer of Au Nanoparticles–C60 Film–Al Film Nanostructure,” Plasmonics 12, 1–9 (2017).

Rep. Prog. Phys. (2)

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47(4), 399–459 (1984).
[Crossref]

Sci. Adv. (1)

C. P. Byers, H. Zhang, D. F. Swearer, M. Yorulmaz, B. S. Hoener, D. Huang, A. Hoggard, W.-S. Chang, P. Mulvaney, E. Ringe, N. J. Halas, P. Nordlander, S. Link, and C. F. Landes, “From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties,” Sci. Adv. 1(11), e1500988 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

X. Meng, U. Guler, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3(1), 1241 (2013).
[Crossref] [PubMed]

Y. Huang, L. Ma, M. Hou, J. Li, Z. Xie, and Z. Zhang, “Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror,” Sci. Rep. 6(1), 30011 (2016).
[Crossref] [PubMed]

Science (2)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, “Plasmoelectric potentials in metal nanostructures,” Science 346(6211), 828–831 (2014).
[Crossref] [PubMed]

Thin Solid Films (1)

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520(1), 501–509 (2011).
[Crossref]

Other (1)

T. Ogawa and Y. Kanemitsu, Optical Properties of Low-Dimensional Materials (Word Scientific, 1995), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Schematic diagram of the plasmon fullerene cavity, which is composed of a single layer dispersed gold islands, coupling with the gold substrate through a fullerene film. There are three different configurations discussed in this paper: (b) without gold film, (c) with a thin gold film, and (d) with a thick gold film, which can totally shield off the substrate effect.
Fig. 2
Fig. 2 (a) Formation mechanism of gold islands on top of fullerene film. (b) Scanning transmission electron microscopy image in a dark field. (c) Transmission electron microscopy image of fullerene.
Fig. 3
Fig. 3 (a) Reflection spectra of the structure with a single layer of gold nano-islands and fullerene film on a silicon substrate. The thickness of fullerene ranges from 28 to 84 nm. (b & c) Structures with another 15 nm (b) and 100 nm (c) gold film, respectively, between the fullerene film and silicon substrate. (d) Resonant wavelength shifting corresponding to different incident light angles. Black, blue, and green traces are results for the C60/AuTF/Si, AuI/C60/AuTF/Si, and AuI/C60/Au structures, respectively. The thickness of the fullerene films is 56 nm.
Fig. 4
Fig. 4 (a) Constructive and destructive wavelengths corresponding to the different thicknesses of C60 films of the plasmon fullerene cavity. (b & c) The displayed spectra were obtained by spectroscopic ellipsometry, Ψ and Δ spectra, respectively. (d) Resonant wavelengths corresponding to different thicknesses of the fullerene films. Red squares are the experimental results obtained by spectroscopic ellipsometry. The dotted line shows the fitting result for the circuit model. The cutoff thickness is 92 nm.
Fig. 5
Fig. 5 Simulation of the plasmon fullerene cavity by finite element method. (a) Reflection spectra of original ( f=0) and modified ( f=0.14) fullerene film in cavity. (b)(c) Evanescent field of the cavity structure with the original and modified fullerene at the resonant wavelength
Fig. 6
Fig. 6 Wide variety of colors obtained by depositing gold-fullerene nanostructure on silicon wafers. The arrangement from the top to bottom follows the thickness of gold film of 0, 15, and 100 nm, and the arrangement from the right to left corresponds to the different thickness of fullerene film. (a) Top View. (b) Oblique view.
Fig. 7
Fig. 7 Energy dispersive spectroscopy, provided in TEM, shows the composition in our configuration. (a) gold nano-islands (b) fullerene film.
Fig. 8
Fig. 8 The measurement of gold nano-islands from the top view. (a) Image taken scanning electron microscopy (SEM). (b) Image taken with atomic forece microscopy (AFM)
Fig. 9
Fig. 9 Raman shift spectrum of the fullerene film on gold shows the quality of fullerene deposited by electron-beam evaporation. The main peak is at 1470 cm−1.
Fig. 10
Fig. 10 Real and imaginary of refractive indices of fullerene films measured by the variable angle spectroscopic ellipsometry.
Fig. 11
Fig. 11 (a) Two dotted lines are the spectra of the silicon and the fullerene films on the silicon substrate. Solid lines are the results for the fullerene plasmonic films; black, red, blue, and green lines correspond to the films with about 25, 40, 55, and 80 nm thicknesses, respectively, deposited on the 15 nm Au films. (b) Resonant wavelengths corresponding to the different C60 thick films.
Fig. 12
Fig. 12 Relationship between the spacer thickness and resonant wavelength of the planar mode that was estimated from Eq. (A1).
Fig. 13
Fig. 13 Spectra of plasmonic fullerene cavities, which is caused by the plasmonic phase shift at the metal–dielectric interface and its optical path.
Fig. 14
Fig. 14 Reflection spectra of the three different structures obtained at incident angles of 15 to 75 degrees, respectively. (a) C60/AuTF/Si structure, (b) AuI/C60/AuTF/Si structure, and (c) plasmon-fullerene cavity, for which the thickness of all fullerene films are about 56 nm.
Fig. 15
Fig. 15 Simulation of reflection of the cavity (black) and dimer (red) structure.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Z tot = 2 iωπ ε 0 r( 2+ ε m ) + R C60 iω L C60
λ s = A L d 1 d d cutoff + O s
ε ¯ C60 = ε C60 + f ω p 2 ω 0 2 ω 2 iγω
d= λ 2π n d ( μπ+ tan 1 ( n 1 ( ν m 2 +1 ) ν m ( n 1 2 1 ) tanh( η m ) ) )
C g = π ε 0 ( n g ) χ r 2 θ max 2 d
Z C Z LR = λ| 2+ ε m | 2 ( n g ) χ r A L θ max 2 ( 4 d cut + ( A L λ ) 2 ) 1 2
ω s = 1 3 ( ω p 2 + ( L C60 πr ε 0 ) 1 )

Metrics