Abstract

This paper examines the characteristics of magneto-optical images of weld defects under alternating magnetic field excitation. Weld defects such as non-penetration, surface cracks and sub-surface cracks were detected by a magneto-optical imaging method. Magneto-optical imaging nondestructive testing experiments under alternating magnetic field excitation were carried out to detect the weld defects. Image processing methods which include contrast enhancement of original image, fused image, contrast enhancement of fused image were applied to extract the defect information of the magneto-optical images. What’s more, the difference among the magneto-optical images of weld defects was obtained by contrast analysis. Experimental results show that non-penetration welding images possess significant differences in brightness and darkness, and this difference in cracks is smaller than non-penetrating ones. Under the same excitation conditions, the leakage flux of welds with non-penetration is stronger than that of weld cracks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling for detecting weld defects based on magneto-optical imaging

Xiangdong Gao, Guohua Li, Ziqin Chen, Chongzhou Lan, Yanfeng Li, and Perry P. Gao
Appl. Opt. 57(21) 6110-6119 (2018)

Magneto-optic microscope for visually detecting subsurface defects

Zhao-Fei Zhou and Yu-hua Cheng
Appl. Opt. 47(19) 3463-3466 (2008)

Magneto-optical visualization of metal-loss defects in a ferromagnetic plate: experimental verification of theoretical modeling

Mikhail Shamonin, Michael Klank, Oliver Hagedorn, and Horst Dötsch
Appl. Opt. 40(19) 3182-3189 (2001)

References

  • View by:
  • |
  • |
  • |

  1. A. Ancona, V. Spagnolo, P. M. Lugarà, and M. Ferrara, “Optical Sensor for real-time Monitoring of CO(2) Laser Welding Process,” Appl. Opt. 40(33), 6019–6025 (2001).
    [Crossref] [PubMed]
  2. C. Yu, B. Chang, S. Wang, and Q. Wang, “Design principles of a novel X-ray imaging system,” Chin. Opt. Lett. 4(3), 158–159 (2006).
  3. K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).
  4. G. Sun, Z. Zhou, X. Chen, and J. Wang, “Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection,” Appl. Opt. 52(26), 6481–6486 (2013).
    [Crossref] [PubMed]
  5. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [Crossref] [PubMed]
  6. Z. F. Zhou and Y. H. Cheng, “Magneto-optic microscope for visually detecting subsurface defects,” Appl. Opt. 47(19), 3463–3466 (2008).
    [Crossref] [PubMed]
  7. W. Swiderski, “Detecting defects in marine structures by using eddy current infrared thermography,” Appl. Opt. 55(34), D17–D21 (2016).
    [Crossref] [PubMed]
  8. J. M. Prince and B. P. Hildebrand, “Low-frequency electromagnetic (eddy-current) holography for imaging in conductors,” Appl. Opt. 32(26), 4960–4971 (1993).
    [Crossref] [PubMed]
  9. X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
    [Crossref]
  10. X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
    [Crossref]
  11. G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).
  12. Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
    [Crossref]
  13. K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).
  14. Y. Deng, X. Liu, and L. Udpa, “Magneto-Optic Imaging for Aircraft Skins Inspection: A Probability of Detection Study of Simulated and Experimental Image Data,” IEEE Trans. Reliab. 61(4), 1–8 (2011).
  15. N. Ma, X. Gao, Y. Song, and N. Zhang, “Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation,” in 2017 IEEE International Conference on Imaging Systems and Techniques (IST) (2017), pp. 394–398.
    [Crossref]
  16. M. Koschny and M. Lindner, “Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials,” Adv. Mater. Process. 170(2), 13–16 (2012).
  17. X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
    [Crossref]
  18. K. Xu, “Integrated silicon directly modulated light source using p-well in standard CMOS technology,” IEEE Sens. J. 16(16), 6184–6191 (2016).
    [Crossref]
  19. H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
    [Crossref]
  20. M. Le, J. Lee, and T. Shoji, “A simulation of magneto-optical eddy current imaging,” NDT Int. 44(8), 783–788 (2011).
    [Crossref]
  21. L. Chen, J. Li, and C. L. Chen, “Regional multifocus image fusion using sparse representation,” Opt. Express 21(4), 5182–5197 (2013).
    [Crossref] [PubMed]
  22. X. Bai, F. Zhou, and B. Xue, “Fusion of infrared and visual images through region extraction by using multi scale center-surround top-hat transform,” Opt. Express 19(9), 8444–8457 (2011).
    [Crossref] [PubMed]
  23. L. Guo, M. Dai, and M. Zhu, “Multifocus color image fusion based on quaternion curvelet transform,” Opt. Express 20(17), 18846–18860 (2012).
    [Crossref] [PubMed]
  24. Q. Guihong, Z. Dali, and Y. Pingfan, “Medical image fusion by wavelet transform modulus maxima,” Opt. Express 9(4), 184–190 (2001).
    [Crossref] [PubMed]
  25. M. Nooshyar, M. Abdipour, and M. Khajuee, “Multi-focus Image Fusion for Visual Sensor Networks in Wavelet Domain,” Comput. Electr. Eng. 37(5), 789–797 (2011).
    [Crossref]
  26. O. Prakash, A. Kumar, and A. Khare, “Pixel-level image fusion scheme based on steerable pyramid wavelet transform using absolute maximum selection fusion rule,” in International Conference on Issues and Challenges in Intelligent Computing Techniques (IEEE, 2014), pp. 765–770.
    [Crossref]

2017 (3)

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

2016 (5)

K. Xu, “Integrated silicon directly modulated light source using p-well in standard CMOS technology,” IEEE Sens. J. 16(16), 6184–6191 (2016).
[Crossref]

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).

W. Swiderski, “Detecting defects in marine structures by using eddy current infrared thermography,” Appl. Opt. 55(34), D17–D21 (2016).
[Crossref] [PubMed]

2013 (2)

2012 (3)

2011 (4)

X. Bai, F. Zhou, and B. Xue, “Fusion of infrared and visual images through region extraction by using multi scale center-surround top-hat transform,” Opt. Express 19(9), 8444–8457 (2011).
[Crossref] [PubMed]

Y. Deng, X. Liu, and L. Udpa, “Magneto-Optic Imaging for Aircraft Skins Inspection: A Probability of Detection Study of Simulated and Experimental Image Data,” IEEE Trans. Reliab. 61(4), 1–8 (2011).

M. Le, J. Lee, and T. Shoji, “A simulation of magneto-optical eddy current imaging,” NDT Int. 44(8), 783–788 (2011).
[Crossref]

M. Nooshyar, M. Abdipour, and M. Khajuee, “Multi-focus Image Fusion for Visual Sensor Networks in Wavelet Domain,” Comput. Electr. Eng. 37(5), 789–797 (2011).
[Crossref]

2008 (1)

2006 (2)

C. Yu, B. Chang, S. Wang, and Q. Wang, “Design principles of a novel X-ray imaging system,” Chin. Opt. Lett. 4(3), 158–159 (2006).

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

2001 (2)

1993 (2)

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

J. M. Prince and B. P. Hildebrand, “Low-frequency electromagnetic (eddy-current) holography for imaging in conductors,” Appl. Opt. 32(26), 4960–4971 (1993).
[Crossref] [PubMed]

Abdipour, M.

M. Nooshyar, M. Abdipour, and M. Khajuee, “Multi-focus Image Fusion for Visual Sensor Networks in Wavelet Domain,” Comput. Electr. Eng. 37(5), 789–797 (2011).
[Crossref]

Ancona, A.

Bai, X.

Chang, B.

Chen, C. L.

Chen, L.

Chen, X.

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

G. Sun, Z. Zhou, X. Chen, and J. Wang, “Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection,” Appl. Opt. 52(26), 6481–6486 (2013).
[Crossref] [PubMed]

Chen, Y.

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

Cheng, Y. H.

Dai, M.

Dali, Z.

Deng, Y.

Y. Deng, X. Liu, and L. Udpa, “Magneto-Optic Imaging for Aircraft Skins Inspection: A Probability of Detection Study of Simulated and Experimental Image Data,” IEEE Trans. Reliab. 61(4), 1–8 (2011).

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

Ferrara, M.

Fitzpatrick, G. L.

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

Gao, X.

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

Guihong, Q.

Guo, L.

Hildebrand, B. P.

Holzhey, R.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Huang, G.

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

Khajuee, M.

M. Nooshyar, M. Abdipour, and M. Khajuee, “Multi-focus Image Fusion for Visual Sensor Networks in Wavelet Domain,” Comput. Electr. Eng. 37(5), 789–797 (2011).
[Crossref]

Koschny, M.

M. Koschny and M. Lindner, “Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials,” Adv. Mater. Process. 170(2), 13–16 (2012).

Lan, C.

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

Le, M.

M. Le, J. Lee, and T. Shoji, “A simulation of magneto-optical eddy current imaging,” NDT Int. 44(8), 783–788 (2011).
[Crossref]

Lee, J.

M. Le, J. Lee, and T. Shoji, “A simulation of magneto-optical eddy current imaging,” NDT Int. 44(8), 783–788 (2011).
[Crossref]

Li, G.

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

Li, J.

Lindner, M.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

M. Koschny and M. Lindner, “Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials,” Adv. Mater. Process. 170(2), 13–16 (2012).

Lindner, S.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Liu, X.

Y. Deng, X. Liu, and L. Udpa, “Magneto-Optic Imaging for Aircraft Skins Inspection: A Probability of Detection Study of Simulated and Experimental Image Data,” IEEE Trans. Reliab. 61(4), 1–8 (2011).

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

Lugarà, P. M.

Nooshyar, M.

M. Nooshyar, M. Abdipour, and M. Khajuee, “Multi-focus Image Fusion for Visual Sensor Networks in Wavelet Domain,” Comput. Electr. Eng. 37(5), 789–797 (2011).
[Crossref]

Okabe, Y.

Pingfan, Y.

Prince, J. M.

Richert, H.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Schäfer, R.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Schmidt, H.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Shih, E. Y. C.

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

Shih, W. C. L.

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

Shoji, T.

M. Le, J. Lee, and T. Shoji, “A simulation of magneto-optical eddy current imaging,” NDT Int. 44(8), 783–788 (2011).
[Crossref]

Skaugset, R. L.

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

Spagnolo, V.

Sun, G.

Swiderski, W.

Thome, D. K.

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

Udpa, L.

Y. Deng, X. Liu, and L. Udpa, “Magneto-Optic Imaging for Aircraft Skins Inspection: A Probability of Detection Study of Simulated and Experimental Image Data,” IEEE Trans. Reliab. 61(4), 1–8 (2011).

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

Wang, J.

Wang, Q.

Wang, S.

Wen, Z.

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).

Wenzel, B.

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Wu, Q.

Xiao, Z.

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

Xu, K.

K. Xu, “Integrated silicon directly modulated light source using p-well in standard CMOS technology,” IEEE Sens. J. 16(16), 6184–6191 (2016).
[Crossref]

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).

Xuan, L.

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

Xue, B.

You, D.

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

Yu, C.

Yu, Q.

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).

Zeng, Z.

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

Zhang, N.

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

Zhang, Z.

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).

Zhou, F.

Zhou, Z.

Zhou, Z. F.

Zhu, M.

Adv. Mater. Process. (1)

M. Koschny and M. Lindner, “Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials,” Adv. Mater. Process. 170(2), 13–16 (2012).

Appl. Opt. (5)

Chin. Opt. Lett. (1)

Comput. Electr. Eng. (1)

M. Nooshyar, M. Abdipour, and M. Khajuee, “Multi-focus Image Fusion for Visual Sensor Networks in Wavelet Domain,” Comput. Electr. Eng. 37(5), 789–797 (2011).
[Crossref]

IEEE Sens. J. (1)

K. Xu, “Integrated silicon directly modulated light source using p-well in standard CMOS technology,” IEEE Sens. J. 16(16), 6184–6191 (2016).
[Crossref]

IEEE Trans. Magn. (1)

Z. Zeng, X. Liu, Y. Deng, L. Udpa, L. Xuan, W. C. L. Shih, and G. L. Fitzpatrick, “A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection,” IEEE Trans. Magn. 42(11), 3737–3744 (2006).
[Crossref]

IEEE Trans. Reliab. (1)

Y. Deng, X. Liu, and L. Udpa, “Magneto-Optic Imaging for Aircraft Skins Inspection: A Probability of Detection Study of Simulated and Experimental Image Data,” IEEE Trans. Reliab. 61(4), 1–8 (2011).

J. Disp. Technol. (2)

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Disp. Technol. 12(2), 115–121 (2016).

K. Xu, Z. Zhang, Q. Yu, and Z. Wen, “Field-Effect Electroluminescence Spectraof, Reverse-Biased PN Junctions in Silicon Device for Microdisplay,” J. Disp. Technol. 12(2), 115–121 (2016).

J. Manuf. Syst. (1)

X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).
[Crossref]

Journal of Nondestructive Evaluation (1)

X. Gao, C. Lan, D. You, G. Li, and N. Zhang, “Weldment Nondestructive Testing Using Magneto-optical Imaging Induced by Alternating Magnetic Field,” Journal of Nondestructive Evaluation 36(3), 55 (2017).
[Crossref]

Mater. Eval. (1)

G. L. Fitzpatrick, D. K. Thome, R. L. Skaugset, E. Y. C. Shih, and W. C. L. Shih, “Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique,” Mater. Eval. 51(12), 1402–1407 (1993).

Mech. Syst. Signal Process. (1)

X. Gao, Y. Chen, D. You, Z. Xiao, and X. Chen, “Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network,” Mech. Syst. Signal Process. 84, 570–583 (2017).
[Crossref]

NDT Int. (1)

M. Le, J. Lee, and T. Shoji, “A simulation of magneto-optical eddy current imaging,” NDT Int. 44(8), 783–788 (2011).
[Crossref]

Opt. Express (5)

Steel Res. (1)

H. Richert, H. Schmidt, S. Lindner, M. Lindner, B. Wenzel, R. Holzhey, and R. Schäfer, “Dynamic magneto-optical imaging of domains in grain oriented electrical steel,” Steel Res. 87(2), 232–240 (2016).
[Crossref]

Other (2)

N. Ma, X. Gao, Y. Song, and N. Zhang, “Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation,” in 2017 IEEE International Conference on Imaging Systems and Techniques (IST) (2017), pp. 394–398.
[Crossref]

O. Prakash, A. Kumar, and A. Khare, “Pixel-level image fusion scheme based on steerable pyramid wavelet transform using absolute maximum selection fusion rule,” in International Conference on Issues and Challenges in Intelligent Computing Techniques (IEEE, 2014), pp. 765–770.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Magneto-optical imaging working principle of detecting weld defects
Fig. 2
Fig. 2 Perfect state of sampling point distribution
Fig. 3
Fig. 3 Schematic diagram of magneto-optical imaging test system
Fig. 4
Fig. 4 Gray value in column. (a) Image without defective weld. (b)Original image of non-penetration in column. (c)Fused image of non-penetration in column
Fig. 5
Fig. 5 Gray value in column. (a)Original image in column. (b)Fused image in column
Fig. 6
Fig. 6 Gray value in column. (a) Original image in column. (b) Fused image in column

Tables (4)

Tables Icon

Table 1 Magneto-optic Images of Non-penetration Welds under Alternating Excitation

Tables Icon

Table 2 Magneto-optical Images of Surface Cracks in Alternating Excitation

Tables Icon

Table 3 Magneto-optical Images of Sub-surface Cracks in Weld under Alternating Magnetic field Excitation

Tables Icon

Table 4 Extract the extreme value of gray value curve

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ=BVL
F f =a F 1 +b F 2 +c F 3

Metrics