Abstract

A new novel method, hyperspectral imaging (HSI), is presented in this work to measure the beam divergence angle and beam profile uniformity of supercontinuum lasers. The obtained results of divergence angles are consistent with theoretically calculated values. The uniformity of different-size projected Gaussian beams was measured through referencing the data sets provided by HSI camera under the wavelength variation. HSI, compared with traditional methods, is much faster and capable of providing critical reference to supercontinuum output parameters measurements and practical application in far-field situation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analytical far-field divergence angle of a truncated Gaussian beam

Emmanuel M. Drège, Neal G. Skinner, and Dale M. Byrne
Appl. Opt. 39(27) 4918-4925 (2000)

Field tests for round-trip imaging at a 1.4  km distance with change detection and ranging using a short-wave infrared super-continuum laser

Mohammed N. Islam, Michael J. Freeman, Lauren M. Peterson, Kevin Ke, Agustin Ifarraguerri, Christopher Bailey, Frank Baxley, Michael Wager, Anthony Absi, James Leonard, Hyatt Baker, and Michael Rucci
Appl. Opt. 55(7) 1584-1602 (2016)

Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements

Romain Ceolato, Nicolas Riviere, and Laurent Hespel
Opt. Express 20(28) 29413-29425 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  3. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of Time and Frequency at the Outset of the 21st Century,” Science 306(5700), 1318–1324 (2004).
    [Crossref] [PubMed]
  4. P. Yan, J. Shu, S. Ruan, J. Zhao, J. Zhao, C. Du, C. Guo, H. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19(6), 4985–4990 (2011).
    [Crossref] [PubMed]
  5. P. L. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, and V. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express 12(22), 5287–5295 (2004).
    [Crossref] [PubMed]
  6. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  7. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  8. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  9. Z. Tang, D. Fan, S. Wen, Y. Ye, and C. Zhao, “Low-pass spatial filtering using a two-dimensional self-collimating photonic crystal,” Chin. Opt. Lett. 5(101), S211–S213 (2007).
  10. Z. Zhang, B. Hu, Q. Yin, T. Yu, S. Li, X. Gao, and H. Zhang, “Design of short wave infrared imaging spectrometer system based on CDP,” Opt. Express 23(23), 29758–29763 (2015).
    [Crossref] [PubMed]
  11. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
    [Crossref] [PubMed]
  12. O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
    [Crossref]
  13. A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
    [Crossref]
  14. C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51(7), 3–16 (2006).
    [Crossref]
  15. O. Steinvall, M. Elmqvist, T. Chevalier, and O. Gustafsson, “Active and passive short-wave infrared and near-infrared imaging for horizontal and slant paths close to ground,” Appl. Opt. 52(20), 4763–4778 (2013).
    [Crossref] [PubMed]
  16. J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64 W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” in SPIE Defense + Security (International Society for Optics and Photonics, 2014), paper 90881A.
  17. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, 1998).
  18. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
    [Crossref]
  19. S. Shibata, S. Mitachi, and S. Takahashi, “High numerical aperture multicomponent glass fiber,” Appl. Opt. 19(9), 1484–1488 (1980).
    [Crossref] [PubMed]
  20. M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt. 20(19), 3415–3422 (1981).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (1)

2007 (2)

Z. Tang, D. Fan, S. Wen, Y. Ye, and C. Zhao, “Low-pass spatial filtering using a two-dimensional self-collimating photonic crystal,” Chin. Opt. Lett. 5(101), S211–S213 (2007).

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

2006 (1)

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51(7), 3–16 (2006).
[Crossref]

2004 (3)

2003 (3)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
[Crossref]

2002 (2)

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

1997 (1)

1981 (1)

1980 (1)

Bergquist, J. C.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of Time and Frequency at the Outset of the 21st Century,” Science 306(5700), 1318–1324 (2004).
[Crossref] [PubMed]

Biancalana, F.

Birks, T.

Birks, T. A.

Broeng, J.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Carrasco, O.

O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
[Crossref]

Chainani, A.

O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
[Crossref]

Chen, Y.

Chevalier, T.

Cullen, P. J.

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

de Matos, C.

Diddams, S. A.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of Time and Frequency at the Outset of the 21st Century,” Science 306(5700), 1318–1324 (2004).
[Crossref] [PubMed]

Downey, G.

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Du, C.

Elmqvist, M.

Fan, D.

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Fischer, C.

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51(7), 3–16 (2006).
[Crossref]

Folken, J. R.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Frias, J. M.

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Fujimoto, J.

Gao, X.

Gapontsev, V.

Gomez, R. B.

O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
[Crossref]

Gowen, A. A.

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Guo, C.

Gustafsson, O.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hsiung, P. L.

Hu, B.

Jefferts, S. R.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of Time and Frequency at the Outset of the 21st Century,” Science 306(5700), 1318–1324 (2004).
[Crossref] [PubMed]

Joly, N.

Kakoulli, I.

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51(7), 3–16 (2006).
[Crossref]

Knight, J.

Knight, J. C.

Ko, T.

Li, S.

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Luo, J.

Mitachi, S.

Mortensen, N. A.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

O’donnell, C. P.

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Oates, C. W.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of Time and Frequency at the Outset of the 21st Century,” Science 306(5700), 1318–1324 (2004).
[Crossref] [PubMed]

Popov, S.

Roper, W. E.

O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
[Crossref]

Ruan, S.

Russell, P.

Russell, P. S. J.

Shibata, S.

Shu, J.

Skovgaard, P. M. W.

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

Steinvall, O.

Takahashi, S.

Tang, Z.

Taylor, J.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Wadsworth, W.

Wei, H.

Wen, S.

Yan, P.

Ye, Y.

Yin, Q.

Young, M.

Yu, T.

Zhang, H.

Zhang, Z.

Zhao, C.

Zhao, J.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

IEEE Photonics Technol. Lett. (1)

N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 14(8), 1094–1096 (2002).
[Crossref]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

O. Carrasco, R. B. Gomez, A. Chainani, and W. E. Roper, “Hyperspectral imaging applied to medical diagnoses and food safety,” Proc. SPIE 5097, 215–221 (2003).
[Crossref]

Science (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of Time and Frequency at the Outset of the 21st Century,” Science 306(5700), 1318–1324 (2004).
[Crossref] [PubMed]

Stud. Conserv. (1)

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51(7), 3–16 (2006).
[Crossref]

Trends Food Sci. Technol. (1)

A. A. Gowen, C. P. O’donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging – an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18(12), 590–598 (2007).
[Crossref]

Other (2)

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64 W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” in SPIE Defense + Security (International Society for Optics and Photonics, 2014), paper 90881A.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic image of experimental setups. The image inset is an image of the field test.
Fig. 2
Fig. 2 (a) SEM image of the PCF in the laser source and (b) the SC output spectrum when the output power is 2 W.
Fig. 3
Fig. 3 Experimental measuring structure diagram. z: the distance between the fiber facet and diffuse reflection board. d: the distance between the center spot and the reference point when optical field intensity of one wavelength decreases to 1 / e 2 of the max P ( λ ) . θ : divergence angle.
Fig. 4
Fig. 4 Theoretical results (solid line in blue) and experimental results (dashed line in red) of divergence angles in different wavelengths.
Fig. 5
Fig. 5 (a) The normalized spectral intensity distribution of the whole beam profile in curve S (pink line) and spot A (red line), B (green line), C (blue line) and (b) each spots’ location in the photograph.
Fig. 6
Fig. 6 (a) 3D beam shape of light intensity in SC source at λ = 618.2 nm and (b) the normalized beam intensity distribution at λ = 500.6 nm (black line), 618.2 nm (red line), 740.1 nm (blue line), 866.3 nm (green line) when the distance between fiber end face and board is 15 cm.
Fig. 7
Fig. 7 The gray-scale map of the set field corresponding different divergence angles (5, 7, 9, 11, 13 degrees) on the board from (a)-(e) and respective uniformity in different wavelengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin θ = d ( λ ) d ( λ ) 2 + z 2
tan θ 1 / e 2 2 k ω = λ π ω
sin θ = ( 1+ π A e f f λ 2 ) 1 2
S ( λ ) = x , y ( I x , y I ¯ ) 2 N

Metrics