Abstract

Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ellipsometry experiments. By probing a parametric space of realistic values for parameters of the Drude model, we obtain a nearly univocal dependence of the surface plasmon damping distance on the dc resistivity demonstrating the relevance of dc resistivity for the evaluation of the plasmonic performances of TiN at telecom frequencies. Finally, we show that better plasmonic performances are obtained for TiN films featuring a low content of oxygen. For low oxygen content and corresponding low resistivity, we attribute the increase of the surface plasmon damping distances to a lower confinement of the plasmon field into the metal and not to a decrease of the absorption of TiN.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. Colas-des-Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos
Opt. Express 25(1) 394-408 (2017)

Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films

Shunsuke Murai, Koji Fujita, Yohei Daido, Ryuichiro Yasuhara, Ryosuke Kamakura, and Katsuhisa Tanaka
Opt. Express 24(2) 1143-1153 (2016)

Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths

S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot
Opt. Express 21(19) 22269-22284 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
    [Crossref]
  2. J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113, 063704 (2013).
    [Crossref]
  3. N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
    [Crossref]
  4. A. Golovashkin and G. Motulevich, “Optical and electrical properties of TiN,” Sov. Phys. JETP 19, 310–317 (1964).
  5. A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
    [Crossref]
  6. J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
    [Crossref]
  7. E. Valkonen, C.-G. Ribbing, and J.-E. Sundgren, “Optical constants of thin TiN films: thickness and preparation effects,” Appl. Opt. 25, 3624–3630 (1986).
    [Crossref] [PubMed]
  8. A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science. 347, 1308–1310 (2015).
    [Crossref] [PubMed]
  9. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
    [Crossref]
  10. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  11. H. Van Bui, A. Kovalgin, and R. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
    [Crossref]
  12. N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
    [Crossref] [PubMed]
  13. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
    [Crossref]
  14. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128–3154 (2015).
    [Crossref]
  15. C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5, 2786–2797 (2015).
    [Crossref]
  16. Y. Wang, A. Capretti, and L. D. Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5, 2415–2430 (2015).
    [Crossref]
  17. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. D. Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5, 2625–2633 (2015).
    [Crossref]
  18. J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
    [Crossref]
  19. S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
    [Crossref]
  20. J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. C. des Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of cmos metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25, 394–408 (2017).
    [Crossref] [PubMed]
  21. A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
    [Crossref]
  22. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012).
    [Crossref]
  23. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
    [Crossref]
  24. J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
    [Crossref]
  25. S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot, “Photothermal modulation of surface plasmon polariton propagation at telecommunication wavelengths,” Opt. Express 21, 22269–22284 (2013).
    [Crossref] [PubMed]
  26. D. Gall, I. Petrov, and J. E. Greene, “Epitaxial Sc1x Tix N(001): Optical and electronic transport properties,” J. Appl. Phys. 89, 401–409 (2001).
    [Crossref]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

2017 (2)

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. C. des Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of cmos metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25, 394–408 (2017).
[Crossref] [PubMed]

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

2016 (2)

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

2015 (7)

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science. 347, 1308–1310 (2015).
[Crossref] [PubMed]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128–3154 (2015).
[Crossref]

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5, 2786–2797 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. D. Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5, 2415–2430 (2015).
[Crossref]

S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. D. Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5, 2625–2633 (2015).
[Crossref]

2014 (1)

2013 (3)

H. Van Bui, A. Kovalgin, and R. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113, 063704 (2013).
[Crossref]

S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot, “Photothermal modulation of surface plasmon polariton propagation at telecommunication wavelengths,” Opt. Express 21, 22269–22284 (2013).
[Crossref] [PubMed]

2012 (1)

2008 (2)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

2001 (2)

D. Gall, I. Petrov, and J. E. Greene, “Epitaxial Sc1x Tix N(001): Optical and electronic transport properties,” J. Appl. Phys. 89, 401–409 (2001).
[Crossref]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

1986 (1)

1981 (1)

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
[Crossref]

1978 (1)

Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
[Crossref]

1977 (1)

A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
[Crossref]

1964 (1)

A. Golovashkin and G. Motulevich, “Optical and electrical properties of TiN,” Sov. Phys. JETP 19, 310–317 (1964).

Appleby, D. J.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Arac, E.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Arocas, J.

Aussenegg, F.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Azuma, K.

Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
[Crossref]

Babicheva, V. E.

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Bagheri, S.

Baum, B. K.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

Behaghel, J. M.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
[Crossref]

Bernardin, T.

Berrier, A.

Berthier, S.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
[Crossref]

Besteiro, L. V.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Boltasseva, A.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science. 347, 1308–1310 (2015).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Bouhelier, A.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Briggs, J. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

Capretti, A.

Chawla, J. S.

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113, 063704 (2013).
[Crossref]

Chmielak, B.

Cluzel, B.

Colas-des Francs, G.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Dereux, A.

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. C. des Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of cmos metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25, 394–408 (2017).
[Crossref] [PubMed]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

des Francs, G. C.

Dionne, J. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Fatome, J.

Ferrera, M.

Finot, C.

Gall, D.

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113, 063704 (2013).
[Crossref]

D. Gall, I. Petrov, and J. E. Greene, “Epitaxial Sc1x Tix N(001): Optical and electronic transport properties,” J. Appl. Phys. 89, 401–409 (2001).
[Crossref]

Ganti, S.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Giesecke, A. L.

Giessen, H.

Gissibl, T.

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

Golovashkin, A.

A. Golovashkin and G. Motulevich, “Optical and electrical properties of TiN,” Sov. Phys. JETP 19, 310–317 (1964).

Gonzàlez, M. U.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Govorov, A. O.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Grandidier, J.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Greene, J. E.

D. Gall, I. Petrov, and J. E. Greene, “Epitaxial Sc1x Tix N(001): Optical and electronic transport properties,” J. Appl. Phys. 89, 401–409 (2001).
[Crossref]

Guler, U.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Hammani, K.

Hassan, K.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012).
[Crossref]

Heintz, O.

Hodroj, A.

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

Hoessbacher, C.

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Hu, E. L.

Igasaki, Y.

Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128–3154 (2015).
[Crossref]

Kassavetis, S.

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128–3154 (2015).
[Crossref]

Kaya, S.

Kildishev, A. V.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

King, P.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Kinsey, N.

Koch, U.

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Kovalgin, A.

H. Van Bui, A. Kovalgin, and R. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Krenn, J.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Kwa, K. S.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Lafait, J.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
[Crossref]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Leuthold, J.

Lingg, H.

A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
[Crossref]

Logothetidis, S.

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

Malara, F.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Marelli, M.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Markey, L.

J.-C. Weeber, J. Arocas, O. Heintz, L. Markey, S. Viarbitskaya, G. C. des Francs, K. Hammani, A. Dereux, C. Hoessbacher, U. Koch, J. Leuthold, K. Rohracher, A. L. Giesecke, C. Porschatis, T. Wahlbrink, B. Chmielak, N. Pleros, and D. Tsiokos, “Characterization of cmos metal based dielectric loaded surface plasmon waveguides at telecom wavelengths,” Opt. Express 25, 394–408 (2017).
[Crossref] [PubMed]

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Massenot, S.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Meng, X.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Metaxa, C.

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

Mitsuhashi, H.

Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
[Crossref]

Motulevich, G.

A. Golovashkin and G. Motulevich, “Optical and electrical properties of TiN,” Sov. Phys. JETP 19, 310–317 (1964).

Muto, T.

Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
[Crossref]

Naik, G. V.

Naldoni, A.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Negro, L. D.

Ni, X.

Nickl, J. J.

A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012).
[Crossref]

O’Neill, A.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Patsalas, P.

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128–3154 (2015).
[Crossref]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

Petach, T. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

Petrov, I.

D. Gall, I. Petrov, and J. E. Greene, “Epitaxial Sc1x Tix N(001): Optical and electronic transport properties,” J. Appl. Phys. 89, 401–409 (2001).
[Crossref]

Pierson, J. F.

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Pleros, N.

Ponon, N. K.

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

Porschatis, C.

Quidant, R.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

Renger, J.

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Ribbing, C.-G.

Richter, G.

Rivory, J.

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
[Crossref]

Rohracher, K.

Sands, T. D.

Schlegel, A.

A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
[Crossref]

Schroeder, J. L.

Shalaev, V. M.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science. 347, 1308–1310 (2015).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

Stauden, T.

Steiberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Sterl, F.

Sundgren, J.-E.

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Tittl, A.

Tsiokos, D.

Valkonen, E.

Van Bui, H.

H. Van Bui, A. Kovalgin, and R. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Viarbitskaya, S.

Wachter, P.

A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
[Crossref]

Wahlbrink, T.

Walter, R.

Wang, Y.

Wang, Z.

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Weeber, J.-C.

Wolters, R.

H. Van Bui, A. Kovalgin, and R. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

Zacharatos, F.

Zgrabik, C. M.

Zhang, X. Y.

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113, 063704 (2013).
[Crossref]

Zuani, S. D.

Adv. Opt. Mater. (1)

A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband hot electron collection for solar water splitting with plasmonic titanium nitride,” Adv. Opt. Mater. 5, 1601031 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully cmos-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108, 051110 (2016).
[Crossref]

Appl. Surf. Sci. (1)

H. Van Bui, A. Kovalgin, and R. Wolters, “On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films,” Appl. Surf. Sci. 269, 45–49 (2013).
[Crossref]

J. Appl. Phys. (4)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001).
[Crossref]

J. S. Chawla, X. Y. Zhang, and D. Gall, “Effective electron mean free path in TiN(001),” J. Appl. Phys. 113, 063704 (2013).
[Crossref]

S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, “Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements,” J. Appl. Phys. 120, 225106 (2016).
[Crossref]

D. Gall, I. Petrov, and J. E. Greene, “Epitaxial Sc1x Tix N(001): Optical and electronic transport properties,” J. Appl. Phys. 89, 401–409 (2001).
[Crossref]

J. Phys. C: Solid State Phys. (1)

A. Schlegel, P. Wachter, J. J. Nickl, and H. Lingg, “Optical properties of TiN and ZrN,” J. Phys. C: Solid State Phys. 10, 4889 (1977).
[Crossref]

J. Phys. Chem. C (1)

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119, 25518–25528 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and electrical properties of titanium nitride films,” Jpn. J. Appl. Phys. 17, 85 (1978).
[Crossref]

Mat. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Materials (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128–3154 (2015).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (4)

Phys. Rev. B (1)

J. Grandidier, S. Massenot, G. Colas-des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Dielectric loaded surface plasmon waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008).
[Crossref]

Science. (1)

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science. 347, 1308–1310 (2015).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

A. Golovashkin and G. Motulevich, “Optical and electrical properties of TiN,” Sov. Phys. JETP 19, 310–317 (1964).

Thin Solid Films (2)

N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O’Neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films 578, 31 – 37 (2015).
[Crossref]

J. Rivory, J. M. Behaghel, S. Berthier, and J. Lafait, “Optical properties of substoichiometric TiNx,” Thin Solid Films 78, 161–165 (1981).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic view of the experimental set-up. (b) Optical image of the input and output grating couplers implemented on the TiN surface. In red is the profile of incident light spot, propagating and scattered by the out-coupling grating SPP jet. Scale bar is 20μm.
Fig. 2
Fig. 2 (a) and (b) Leakage radiation images of SPP jets propagating on the surface of TiN thin films with the respective dc resistivity as measured by 4pp method of 70 and 29μΩ.cm. Scale bar is 20μm. (c) The corresponding least-square linear fitting results, from which the values of LSPP were derived.
Fig. 3
Fig. 3 Directly measured damping distance L S P P f 2 f as a function of the electrical dc resistivity ρ4pp. A subset of samples labeled (#1)-(#3) is additionally studied by SE (red dots) in the following.
Fig. 4
Fig. 4 (a) TiN/Air SPP damping distance computed as a function of the resistivity ρD in the framework of the Drude model showing the multi-valued nature of LSPP as a function of ρD. Red dots correspond to the subset of samples investigated by SE. The black crosses are experimental data compiled from the literature and extracted from Ref. [14]
Fig. 5
Fig. 5 XPS depth profiles of the three selected samples.

Tables (2)

Tables Icon

Table 1 Drude model parameters at a free-space wavelength of 1.55μm obtained by the fitting of the SE data taken over the spectral range 1300nm–1800nm.

Tables Icon

Table 2 Comparison of the dc resistivities and damping distances directly measured ( ρ 4 P P , L S P P f 2 f ) or computed according to Drude model (ρD, LSPP).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε r ( ω ) = ε ω p 2 ω 2 + γ d 2 + i ω p 2 γ d ω ( ω 2 + γ d 2 )
L S P P ( ε r ) 2 k 0 × ε r

Metrics