Abstract

A novel fiber structure, coreless side-polished fiber (CSPF) that is wrapped by polydimethylsiloxane (PDMS), is demonstrated to be highly sensitive to temperature because of the high refractive index sensitivity of the CSPF and the large thermal optic coefficient of the PDMS. Our numerical and experimental results show that the several dips in the transmitted spectra of PDMSW-CSPF is originated from the multimode interference (MMI) in the CSPF and will blueshift with the increase of temperature. Furthermore, for such a PDMSW-CSPF, we investigate its temperature sensing characteristics and the influences of residual thickness (RT) and dip wavelength on the sensitivity both numerically and experimentally. In the temperature range of 30~85°C, the PDMSW-CSPF with RT = 43.26 μm exhibits a high temperature sensitivity of −0.4409 nm/°C, the high linearity of 0.9974, and the high stability with low standard deviation of 0.141 nm. Moreover, in the cycle experiments, where the environmental temperature was set to automatically increase and then decrease, the PDMSW-CSPF exhibits a low relative deviation of sensitivity (RSD) of down to ± 0.068%. Here, the RSD is defined as the ratio of sensitivity deviation to the average sensitivity measured in the heating/cooling cycle experiments. The lower RSD indicates that PDMSW-CSPF has better reversibility than other fiber structure. The investigations also show that the sensitivity of the PDMSW-CSPF could be enhanced further by reducing the residual thickness and choosing the dip at a longer wavelength.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film

Yong Wang, Qing Huang, Wenjie Zhu, Minghong Yang, and Elfed Lewis
Opt. Express 26(2) 1910-1917 (2018)

Highly sensitive PDMS-filled Fabry–Perot interferometer temperature sensor based on the Vernier effect

Leyi Hou, Chunliu Zhao, Ben Xu, Bangning Mao, Changyu Shen, and D. N. Wang
Appl. Opt. 58(18) 4858-4865 (2019)

Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro
Appl. Opt. 51(16) 3236-3242 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
    [Crossref] [PubMed]
  2. Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
    [Crossref]
  3. Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
    [Crossref]
  4. M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
    [Crossref]
  5. Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
    [Crossref]
  6. M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
    [Crossref]
  7. C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
    [Crossref]
  8. A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
    [Crossref]
  9. C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
    [Crossref]
  10. Z. Peng, L. Ping, and C. Chi, “An ultrahigh sensitivity point temperature sensor based on fiber loop mirror,” IEEE J. Sel. Top. Quant. 23(2), 274–277 (2017).
    [Crossref]
  11. Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
    [Crossref]
  12. M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
    [Crossref]
  13. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [Crossref] [PubMed]
  14. X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
    [Crossref]
  15. W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Opt. Express 22(23), 28132–28141 (2014).
    [Crossref] [PubMed]
  16. Y. Zhao, Z. Deng, and H. Hu, “Fiber-optic SPR sensor for temperature measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
    [Crossref]
  17. M. Lu, X. Zhang, Y. Liang, L. Li, J. F. Masson, and W. Peng, “Liquid crystal filled surface plasmon resonance thermometer,” Opt. Express 24(10), 10904–10911 (2016).
    [Crossref] [PubMed]
  18. J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
    [Crossref]
  19. R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
    [Crossref]
  20. A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
    [Crossref]
  21. Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
    [Crossref]
  22. H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
    [Crossref] [PubMed]
  23. H. Guan, H. Liu, H. Lu, J. Yu, J. Tang, J. Zhang, W. Qiu, Y. Wang, Y. Wang, and Y. Luo, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088–2094 (2016).
    [Crossref]
  24. J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
    [Crossref]
  25. Y. E. Fan, T. Zhu, L. Shi, and Y. J. Rao, “Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation,” Appl. Opt. 50(23), 4604–4610 (2011).
    [Crossref] [PubMed]
  26. C. S. Park, K. I. Joo, S. W. Kang, and H. R. Kim, “A PDMS-coated optical fiber bragg Grating Sensor for enhancing temperature sensitivity,” J. Opt. Soc. Korea 15(4), 329–334 (2011).
    [Crossref]
  27. J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
    [Crossref]
  28. M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
    [Crossref]

2017 (9)

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Z. Peng, L. Ping, and C. Chi, “An ultrahigh sensitivity point temperature sensor based on fiber loop mirror,” IEEE J. Sel. Top. Quant. 23(2), 274–277 (2017).
[Crossref]

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

2016 (5)

2015 (4)

Y. Zhao, Z. Deng, and H. Hu, “Fiber-optic SPR sensor for temperature measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

2014 (4)

W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Opt. Express 22(23), 28132–28141 (2014).
[Crossref] [PubMed]

Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

2013 (3)

Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

2011 (3)

Algorri, J. F.

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

Bennis, N.

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

Cai, L.

Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Cai, Z.

Cao, Y.

Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
[Crossref]

Chen, C.

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Chen, H.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Chen, L.

Chen, Q.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Chen, Z.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Chi, C.

Z. Peng, L. Ping, and C. Chi, “An ultrahigh sensitivity point temperature sensor based on fiber loop mirror,” IEEE J. Sel. Top. Quant. 23(2), 274–277 (2017).
[Crossref]

Cruz-Garcia, M. A.

Dai, L.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Deng, Z.

Y. Zhao, Z. Deng, and H. Hu, “Fiber-optic SPR sensor for temperature measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

Ding, M.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Dong, H.

Dong, J.

Du, C.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Du, Y.

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Dwivedi, R.

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

Fan, Y. E.

Farrell, G.

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
[Crossref]

Guan, H.

Guan, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

Hatta, A. M.

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
[Crossref]

Hernández-Cordero, J.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Hernández-Romano, I.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref] [PubMed]

Hsiao, V. K.

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Hu, H.

Y. Zhao, Z. Deng, and H. Hu, “Fiber-optic SPR sensor for temperature measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

Hu, Y.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Jian, S.

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Jian, W.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Jiang, M.

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

Jiang, P.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Jiang, Y.

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Jin, W.

Joo, K. I.

Kang, S. W.

Kim, H. R.

Kumar, A.

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

Kumar, M.

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

Li, C.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Li, H.

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Li, J.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Li, K.

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

Li, L.

Li, X.

Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Liang, Y.

Lin, H.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Liu, H.

Liu, W.

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Liu, X.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Long, S.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

López-Figueroa, E. O.

Lu, H.

Lu, M.

Luo, Y.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

H. Guan, H. Liu, H. Lu, J. Yu, J. Tang, J. Zhang, W. Qiu, Y. Wang, Y. Wang, and Y. Luo, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088–2094 (2016).
[Crossref]

Lv, R.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Martín, J. C.

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

Martínez-Gaytán, A.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Martínez-Piñón, F.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Masson, J. F.

Meng, C.

Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Monzón-Hernández, D.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref] [PubMed]

Moreno-Hernández, C.

Moreno-Hernández, D.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Ning, T.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Oropeza-Ramos, L.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Paredes-Gallardo, O. E.

Park, C. S.

Pei, L.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Peng, W.

Peng, Z.

Z. Peng, L. Ping, and C. Chi, “An ultrahigh sensitivity point temperature sensor based on fiber loop mirror,” IEEE J. Sel. Top. Quant. 23(2), 274–277 (2017).
[Crossref]

Ping, L.

Z. Peng, L. Ping, and C. Chi, “An ultrahigh sensitivity point temperature sensor based on fiber loop mirror,” IEEE J. Sel. Top. Quant. 23(2), 274–277 (2017).
[Crossref]

Qiu, W.

Rao, Y. J.

Sánchez-Pena, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

Semenova, Y.

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
[Crossref]

Shen, Y.

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Shi, L.

Soto-Olmos, J.

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

Sun, H.

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Tang, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

H. Guan, H. Liu, H. Lu, J. Yu, J. Tang, J. Zhang, W. Qiu, Y. Wang, Y. Wang, and Y. Luo, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088–2094 (2016).
[Crossref]

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Tong, Z.

Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
[Crossref]

Torres-Cisneros, M.

Tripathi, S. M.

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

Urruchi, V.

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

Velázquez-González, J. S.

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

Villalba, A.

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

Villatoro, J.

Wang, C.

Wang, J.

Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
[Crossref]

Wang, P.

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
[Crossref]

Wang, Q.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Wang, Y.

Wang, Z.

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

Wen, X.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Wu, Q.

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
[Crossref]

Wu, Y.

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Xiao, Y.

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Xuan, H.

Xue, Y.

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Yang, B.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Yang, F.

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

Yang, R.

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Yang, Y.

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

You, H.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Yu, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

H. Guan, H. Liu, H. Lu, J. Yu, J. Tang, J. Zhang, W. Qiu, Y. Wang, Y. Wang, and Y. Luo, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088–2094 (2016).
[Crossref]

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Yu, Y.

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Zhai, Y.

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Zhang, B.

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Zhang, C.

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Zhang, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

H. Guan, H. Liu, H. Lu, J. Yu, J. Tang, J. Zhang, W. Qiu, Y. Wang, Y. Wang, and Y. Luo, “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Opt. Mater. Express 6(6), 2088–2094 (2016).
[Crossref]

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Zhang, W.

Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
[Crossref]

Zhang, X.

M. Lu, X. Zhang, Y. Liang, L. Li, J. F. Masson, and W. Peng, “Liquid crystal filled surface plasmon resonance thermometer,” Opt. Express 24(10), 10904–10911 (2016).
[Crossref] [PubMed]

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Zhao, Y.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Y. Zhao, Z. Deng, and H. Hu, “Fiber-optic SPR sensor for temperature measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

Zhao, Z.

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

Zheng, J.

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Zhou, J.

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, J. Tang, W. Zhu, Z. Cai, Y. Xiao, J. Zhang, and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt. Express 25(5), 5352–5365 (2017).
[Crossref] [PubMed]

Zhu, C.

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

Zhu, T.

Zhu, W.

Appl. Opt. (1)

IEEE J. Sel. Top. Quant. (2)

J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. 23(2), 238–245 (2017).
[Crossref]

Z. Peng, L. Ping, and C. Chi, “An ultrahigh sensitivity point temperature sensor based on fiber loop mirror,” IEEE J. Sel. Top. Quant. 23(2), 274–277 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature end-capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2013).
[Crossref]

A. Martínez-Gaytán, J. Soto-Olmos, L. Oropeza-Ramos, and J. Hernández-Cordero, “Fabrication process for PDMS polymer/silica long-period fiber grating sensors,” IEEE Photonics Technol. Lett. 27(20), 2150–2153 (2015).
[Crossref]

IEEE Sens. J. (1)

R. Yang, Y. Yu, C. Zhu, Y. Xue, C. Chen, X. Zhang, B. Zhang, and H. Sun, “PDMS-coated S-tapered Fiber for highly sensitive measurements of transverse load and temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, Z. Deng, and H. Hu, “Fiber-optic SPR sensor for temperature measurement,” IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015).
[Crossref]

J. Opt. Soc. Korea (1)

Meas. Sci. Technol. (1)

J. Yu, H. Li, V. K. Hsiao, W. Liu, J. Tang, Y. Zhai, Y. Du, J. Zhang, Y. Xiao, and Z. Chen, “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Meas. Sci. Technol. 24(9), 094019 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–single-mode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett. 53(9), 2181–2185 (2011).
[Crossref]

Opt. Commun. (3)

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

C. Li, T. Ning, X. Wen, J. Li, J. Zheng, H. You, H. Chen, C. Zhang, and W. Jian, “Strain and temperature discrimination using a fiber Bragg grating and multimode interference effects,” Opt. Commun. 343, 6–9 (2015).
[Crossref]

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

A. Villalba and J. C. Martín, “Interferometric temperature sensor based on a water-filled suspended-core fiber,” Opt. Fiber Technol. 33, 36–38 (2017).
[Crossref]

Opt. Laser Technol. (3)

C. Li, T. Ning, J. Li, L. Pei, C. Zhang, C. Zhang, H. Lin, and X. Wen, “Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber bragg grating,” Opt. Laser Technol. 90, 179–184 (2017).
[Crossref]

M. Ding, B. Yang, P. Jiang, X. Liu, L. Dai, Y. Hu, and B. Zhang, “High-sensitivity thermometer based on singlemode-multimode FBG-singlemode fiber,” Opt. Laser Technol. 96, 313–317 (2017).
[Crossref]

Y. Wu, L. Pei, W. Jin, Y. Jiang, Y. Yang, Y. Shen, and S. Jian, “Highly sensitive curvature sensor based on asymmetrical twin core fiber and multimode fiber,” Opt. Laser Technol. 92, 74–79 (2017).
[Crossref]

Opt. Mater. Express (1)

Optoelectron. Lett. (1)

Z. Tong, J. Wang, W. Zhang, and Y. Cao, “Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG,” Optoelectron. Lett. 9(3), 238–240 (2013).
[Crossref]

Sens. Actuators B Chem. (3)

Y. Zhao, L. Cai, X. Li, and C. Meng, “Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG,” Sens. Actuators B Chem. 196, 518–524 (2014).
[Crossref]

J. S. Velázquez-González, D. Monzón-Hernández, D. Moreno-Hernández, F. Martínez-Piñón, and I. Hernández-Romano, “Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor,” Sens. Actuators B Chem. 242, 912–920 (2017).
[Crossref]

M. Kumar, A. Kumar, and R. Dwivedi, “Ultra high sensitive integrated optical waveguide refractive index sensor based on multimode interference,” Sens. Actuators B Chem. 222, 556–561 (2016).
[Crossref]

Sens. Rev. (1)

M. Jiang, Z. Wang, Z. Zhao, K. Li, and F. Yang, “Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature,” Sens. Rev. 38(1), 79–83 (2017).
[Crossref]

Sensors (Basel) (1)

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “A novel high-sensitivity, low-power, liquid crystal temperature sensor,” Sensors (Basel) 14(4), 6571–6583 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagrams of PDMS-wrapped CSPF: (a) three-dimensional view and (b) vertical section.
Fig. 2
Fig. 2 Simulated results of the PDMSW-CSPF with a residual thickness (RT) of 43.26μm. (a) Transmission spectra with temperature (30~85°C); (b)~(g) field evolutions in vertical sections (yz-plane) along the PDMSW-CSPF with temperatures of 30°C (b), 40°C (c), 50°C (d), 60°C (e), 70°C (f) and 80°C (g).
Fig. 3
Fig. 3 (a) Microscopic image of the flat section of the CSPF with a RT of 51.27 μm; (b) Microscopic image of polished surface of the CSPF; (c) Variations of residual thicknesses for the three fabricated CSPFs.
Fig. 4
Fig. 4 Schematic of experimental setup to investigate the temperature sensing characteristics of the PDMSW-CSPF.
Fig. 5
Fig. 5 The shift of transmitted spectra of the PDMSW-CSPF with RT = 57.81 μm with temperature increase from 30 °C to 85 °C for (a) experiment and (b) simulation.
Fig. 6
Fig. 6 The measured transmitted spectra of the PDMSW-CSPFs with RTs of (a) 43.26 μm, (c) 51.27 μm and (e) 57.81 μm; Simulated transmission spectra of the PDMSW-CSPFs with RTs of (b) 43.26 μm, (d)51.27 μm and (f) 57.81 μm; Measured (g) and simulated (h) dependencies of dip wavelength on temperature of PDMSW-CSPFs; Measured (i) and simulated (j) dependencies of dip wavelength on temperature sensitivity.
Fig. 7
Fig. 7 Influence of the RW on the sensitivity of the PDMSW-CSPF results for the CSPF with a RT of 43.26μm. Transmission spectrum: (a) the measured spectra, (b) the simulated spectra. Shift of the dip with temperature at different RWs: (c) measured, (d) simulated. The corresponding sensitivities in the temperature ranges: (e) measured, (f) simulated.
Fig. 8
Fig. 8 The cycle experiments to characterize the reversibility of the PDMSW-CSPF with RT = 43.26 μm when the chamber temperature is heating and cooling. The linear dependences of the dip wavelength on the temperature for the heat/cool cycle experiments when tracking dip1 (a), dip2 (b) and dip3 (c), respectively; (d) ‘sensitivity of the tracking dips.
Fig. 9
Fig. 9 The long-term stability of the PDMSW-CSPF. (a) the long-term variation of the dip wavelength and (b) standard deviation of the dip wavelength at 40°C, 50°C, 60°C, 70°C and 80°C, respectively.

Tables (1)

Tables Icon

Table 1 Performance and fabrication of different temperature fiber sensors.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ= 2πL λ ( n j eff n k eff )=const,
Δϕ= ϕ λ Δλ+ ϕ n PDMS Δ n PDMS =0.
S T = Δλ ΔT = γλ PDMS ( n j eff n k eff ) ( n j eff n k eff )λ λ ( n j eff n k eff ) ,
S T = γλ PDMS ( n j eff n k eff ) n j eff n k eff .

Metrics