Abstract

Photonic generation of linearly chirped microwave waveforms (LCMWs) using a monolithic integrated three-section laser is experimentally demonstrated in this work. All three sections of the laser cavity, including the front DFB section, phase section and rear DFB section, have the same active layer, which can avoid the butt-joint re-growth process. The gratings in both DFB sections are fabricated by the Reconstruction Equivalent Chirp technique, which can significantly decrease the difficulties in realizing precise grating structure. By adjusting the integrated three-section semiconductor laser to work in the period-one (P1) state and applying a sweeping signal to the front DFB section, the beating signal, i.e., an LCMW with a large time bandwidth product (TBWP), can be generated. In the current proof-of-concept experiment, an LCMW with a large TBWP up to 5.159 × 105 is generated, of which the bandwidth and the duration time are 6.7 GHz and 77 us respectively. The compressed pulse width is 150 ps. In addition, by adjusting the bias currents of the rear DFB section and front DFB section as well as the amplitude of the sweeping signals, LCMWs with tunable center frequency and tunable bandwidth can be achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser

Xin Zhang, Jilin Zheng, Tao Pu, Yunshan Zhang, Yuechun Shi, Jin Li, Yuandong Li, Huatao Zhu, and Xiangfei Chen
Opt. Express 27(5) 7036-7046 (2019)

Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery

Biwei Pan, Lu Guo, Limeng Zhang, Dna Lu, Li Huo, Caiyun Lou, and Lingjuan Zhao
Appl. Opt. 55(11) 2930-2935 (2016)

Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser

Biwei Pan, Dan Lu, Yu Sun, Liqiang Yu, Limeng Zhang, and Lingjuan Zhao
Opt. Lett. 39(22) 6395-6398 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2002).
  2. M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).
  3. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  4. D. G. Johnson and G. M. Brooker, “Wide Band Linearization of a Millimetre-Wave, Linear Frequency Modulated Radar Employing a Surface Acoustic Wave, Delay Line Discriminator,” in Smart Sensors and Sensing Technology, G. S. Gupta, ed. (Springer Verlag, 2008).
  5. E. Adler, E. Viveiros, T. Ton, and J. Kurtz, “Direct digital synthesis applications for radar development,” inProceedings of Radar Conference (IEEE, 1995), pp. 224–226.
    [Crossref]
  6. C. Wang and J. Yao, “Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
    [Crossref]
  7. C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
    [Crossref]
  8. C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
    [Crossref]
  9. J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
    [Crossref]
  10. J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
    [Crossref] [PubMed]
  11. P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
    [Crossref] [PubMed]
  12. O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
    [Crossref]
  13. L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
    [Crossref]
  14. Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
    [Crossref] [PubMed]
  15. Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
    [Crossref] [PubMed]
  16. J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
    [Crossref]
  17. D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear Dynamics in Integrated Coupled DFB Lasers with Ultra-Short Delay,” Opt. Express 22(5), 5614–5622 (2014).
    [Crossref] [PubMed]
  18. K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
    [Crossref]
  19. S. C. Chan, “Analysis of an Optically Injected Semiconductor Laser for Microwave Generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
    [Crossref]
  20. S. Ji, Y. Hong, P. S. Spencer, J. Benedikt, and I. Davies, “Broad Tunable Photonic Microwave Generation Based on Period-One Dynamics of Optical Injection Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 25(17), 19863–19871 (2017).
    [Crossref] [PubMed]
  21. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  22. P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator,” inProceedings of International Topical Meeting on Microwave Photonics (IEEE, 2017), pp. 1–4.
    [Crossref]
  23. J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41(24), 5764–5767 (2016).
    [Crossref] [PubMed]

2017 (4)

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

S. Ji, Y. Hong, P. S. Spencer, J. Benedikt, and I. Davies, “Broad Tunable Photonic Microwave Generation Based on Period-One Dynamics of Optical Injection Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 25(17), 19863–19871 (2017).
[Crossref] [PubMed]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (1)

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (1)

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

2011 (1)

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
[Crossref]

2010 (1)

S. C. Chan, “Analysis of an Optically Injected Semiconductor Laser for Microwave Generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

2009 (1)

2008 (2)

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

C. Wang and J. Yao, “Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

2007 (1)

2005 (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

2003 (1)

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Adams, M. J.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
[Crossref]

Adler, E.

E. Adler, E. Viveiros, T. Ton, and J. Kurtz, “Direct digital synthesis applications for radar development,” inProceedings of Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Bauer, S.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Benedikt, J.

Bowers, J. E.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Brox, O.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Chan, S. C.

Chen, G.

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Chen, J.

Chen, N. W.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Chen, X.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Davies, I.

Du, Y.

Goh, C. S.

Guo, L.

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Guo, Q.

Guo, Q. S.

P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator,” inProceedings of International Topical Meeting on Microwave Photonics (IEEE, 2017), pp. 1–4.
[Crossref]

Henning, I. D.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
[Crossref]

Hong, Y.

Hou, L.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Huang, C. B.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Hurtado, A.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
[Crossref]

Hwang, S. K.

Ji, S.

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Kreissl, J.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Kuo, F. M.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Kurtz, J.

E. Adler, E. Viveiros, T. Ton, and J. Kurtz, “Direct digital synthesis applications for radar development,” inProceedings of Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Li, J.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Li, L.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Li, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Li, S. S.

Li, X. Z.

Liu, D.

Liu, J. M.

Liu, Y.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Lu, D.

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Lu, J.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Luo, Y.

Marsh, J. H.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Pan, B.

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Pan, S.

Pan, S. L.

P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator,” inProceedings of International Topical Meeting on Microwave Photonics (IEEE, 2017), pp. 1–4.
[Crossref]

Pu, T.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Qiu, B.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Radziunas, M.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Sartorius, B.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Schires, K.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
[Crossref]

Set, S. Y.

J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
[Crossref] [PubMed]

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Shi, J. W.

J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
[Crossref] [PubMed]

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Shi, Y.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Sieber, J.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Spencer, P. S.

Sun, C.

Tang, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Ton, T.

E. Adler, E. Viveiros, T. Ton, and J. Kurtz, “Direct digital synthesis applications for radar development,” inProceedings of Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Viveiros, E.

E. Adler, E. Viveiros, T. Ton, and J. Kurtz, “Direct digital synthesis applications for radar development,” inProceedings of Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Wang, C.

C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[Crossref]

C. Wang and J. Yao, “Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

Wei, C. C.

Wolfrum, M.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Wun, J. M.

Wunsche, H.-J.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

Xiong, B.

Yao, J.

C. Wang and J. Yao, “Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating,” J. Lightwave Technol. 27(16), 3336–3341 (2009).
[Crossref]

C. Wang and J. Yao, “Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

Zhang, F.

Zhang, F. Z.

P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator,” inProceedings of International Topical Meeting on Microwave Photonics (IEEE, 2017), pp. 1–4.
[Crossref]

Zhang, T.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Zhang, X.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Zhang, Y.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Zhang, Z.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Zhao, G.

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Zhao, L.

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Zheng, J.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Zhou, P.

P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
[Crossref] [PubMed]

P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator,” inProceedings of International Topical Meeting on Microwave Photonics (IEEE, 2017), pp. 1–4.
[Crossref]

Zhou, Y.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation Properties Enhancement in a Monolithic Integrated Two-Section DFB Laser Utilizing Side-Mode Injection Locking Method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Zhuang, J. P.

Zou, L.

AIP Adv. (1)

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive Experimental Analysis of Nonlinear Dynamics in an Optically-Injected Semiconductor Laser,” AIP Adv. 1(3), 032131 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

S. C. Chan, “Analysis of an Optically Injected Semiconductor Laser for Microwave Generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

IEEE Photonics J. (2)

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental Demonstration of Amplified Feedback DFB Laser with Modulation Bandwidth Enhancement Based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Guo, D. Lu, B. Pan, G. Chen, and L. Zhao, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

C. Wang and J. Yao, “Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (6)

Opt. Lett. (1)

Sci. Rep. (1)

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(1), 7377 (2015).
[Crossref] [PubMed]

Other (5)

D. G. Johnson and G. M. Brooker, “Wide Band Linearization of a Millimetre-Wave, Linear Frequency Modulated Radar Employing a Surface Acoustic Wave, Delay Line Discriminator,” in Smart Sensors and Sensing Technology, G. S. Gupta, ed. (Springer Verlag, 2008).

E. Adler, E. Viveiros, T. Ton, and J. Kurtz, “Direct digital synthesis applications for radar development,” inProceedings of Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2002).

M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).

P. Zhou, F. Z. Zhang, Q. S. Guo, and S. L. Pan, “Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator,” inProceedings of International Topical Meeting on Microwave Photonics (IEEE, 2017), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Experimental setup using the laser module, (b) schematic of laser structure, (c) REC grating structure, (d) photograph of the laser chip.
Fig. 2
Fig. 2 Optical spectrum of the free-running front DFB laser (red dashed curve) when IDC1 and IDC2 are set to be 0 mA and 80 mA separately and the three-section laser in P1 state (black solid curve), when IDC1 and IDC2 are set to be 75 mA and 80 mA separately.
Fig. 3
Fig. 3 (a) Measured optical spectrum with IDC2 varied from 60 to 92 mA while IDC1 being fixed at 77 mA, (b) measured electrical spectrum with IDC2 being varied from 60 to 92 mA while IDC1 being fixed at 77 mA.
Fig. 4
Fig. 4 Measured frequency difference as a function of IDC2 when IDC1 is fixed.
Fig. 5
Fig. 5 (a) The injected sawtooth signal, (b) measured signal waveform in one period, (c) the calculated instantaneous frequency (the red dashed line is fitting curve).
Fig. 6
Fig. 6 (a) The inverse fitting control signal, (b) measured LCMW in one period, (c) the calculated instantaneous frequency (the red dashed line is fitting curve).
Fig. 7
Fig. 7 (a) The autocorrelation result, (b) zoom-in view of the autocorrelation.
Fig. 8
Fig. 8 Measured waveform and corresponding instantaneous frequency output from the three-section DFB laser with different IDC1, IDC2 and VRF. (a) IDC1 = 96.43 mA, IDC2 = 62.29 mA, VRF = 0.4 V, (b) IDC1 = 95.91 mA, IDC2 = 68.29 mA, VRF = 0.5 V, (c) IDC1 = 73.22 mA, IDC2 = 81.9 mA, VRF = 0.5 V, (d) IDC1 = 75.82 mA, IDC2 = 73.42 mA, VRF = 1.5 V, (e) IDC1 = 89.48 mA, IDC2 = 73.41 mA, VRF = 0.7 V, (f) IDC1 = 88.16 mA, IDC2 = 75.23 mA, VRF = 2 V (the red dashed line is fitting curve, CF: central frequency, BW: bandwidth).
Fig. 9
Fig. 9 Measured linewidths of the generated microwave signals with different IDC1, IDC2. (a) IDC1 = 102.26 mA, IDC2 = 60.58 mA, (b) IDC1 = 101.26 mA, IDC2 = 72.17 mA.

Metrics