Abstract

We propose an ultrashort and broadband silicon mode-conversion polarization splitter-rotator (PSR) consisting of a taper and a Y-junction both designed by the fast quasiadiabatic dynamics (FAQUAD). The FAQUAD is used to homogeneously distribute adiabaticity over the length of the PSR, providing shortcut to adiabaticity at a shorter device length. The total length of the silicon PSR is 39.2 μm. For a wavelength range from 1.5 μm to 1.6 μm, the PSR exhibits a good performance with > 88% transmission and > 11.4 dB extinction ratio (ER). Simulations also show that the designed devices have good fabrication tolerance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and low-crosstalk polarization splitter-rotator with optimized tapers

Defen Guo and Tao Chu
OSA Continuum 1(3) 841-850 (2018)

Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics

Hung-Ching Chung, Kun-Sheng Lee, and Shuo-Yen Tseng
Opt. Express 25(12) 13626-13634 (2017)

Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity

Tzu-Hsuan Pan and Shuo-Yen Tseng
Opt. Express 23(8) 10405-10412 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [Crossref]
  2. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
    [Crossref]
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  4. D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45(20), 4941–4946 (2006).
    [Crossref] [PubMed]
  5. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref] [PubMed]
  6. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [Crossref] [PubMed]
  7. J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO2 top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
    [Crossref] [PubMed]
  8. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  9. Y. Fei, L. Zhang, T. Cao, Y. Cao, and S. Chen, “Ultracompact polarization splitter-rotator based on an asymmetric directional coupler,” Appl. Opt. 51(34), 8257–8261 (2012).
    [Crossref] [PubMed]
  10. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [Crossref] [PubMed]
  11. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  12. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
    [Crossref] [PubMed]
  13. W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
    [Crossref] [PubMed]
  14. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
    [Crossref]
  15. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
    [Crossref]
  16. M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
    [Crossref]
  17. J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
    [Crossref] [PubMed]
  18. T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng, “Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides,” Opt. Express 20(21), 24085–24092 (2012).
    [Crossref] [PubMed]
  19. S.-Y. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
    [Crossref] [PubMed]
  20. S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
    [Crossref] [PubMed]
  21. S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21(18), 21224–21235 (2013).
    [Crossref] [PubMed]
  22. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
    [Crossref] [PubMed]
  23. S.-Y. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 39(23), 6600–6603 (2014).
    [Crossref] [PubMed]
  24. X. Chen, R.-D. Wen, and S.-Y. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Opt. Express 24(16), 18322–18331 (2016).
    [Crossref] [PubMed]
  25. T.-H. Pan and S.-Y. Tseng, “Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity,” Opt. Express 23(8), 10405–10412 (2015).
    [Crossref] [PubMed]
  26. D. Guo and T. Chu, “Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity,” Opt. Express 25(8), 9160–9170 (2017).
    [Crossref] [PubMed]
  27. X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22(20), 24169–24178 (2014).
    [Crossref] [PubMed]
  28. S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
    [Crossref]
  29. S. Martínez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
    [Crossref] [PubMed]
  30. H.-C. Chung, K.-S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics,” Opt. Express 25(12), 13626–13634 (2017).
    [Crossref] [PubMed]
  31. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
    [Crossref]
  32. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [Crossref] [PubMed]
  33. M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys. 51(3-4), 165–169 (1928).
    [Crossref]
  34. FIMMWAVE / FIMMPROP, Photon Design Ltd, http://www.photond.com .
  35. J. D. Love and N. Riesen, “Single, few-, and multimode Y-junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [Crossref]
  36. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  37. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
    [Crossref]
  38. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
    [Crossref] [PubMed]
  39. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [Crossref] [PubMed]
  40. P.-H. Fu, Y.-C. Tu, and D.-W. Huang, “Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm,” Opt. Express 24(26), 30547–30561 (2016).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

2015 (4)

T.-H. Pan and S.-Y. Tseng, “Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity,” Opt. Express 23(8), 10405–10412 (2015).
[Crossref] [PubMed]

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

2014 (7)

X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22(20), 24169–24178 (2014).
[Crossref] [PubMed]

S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
[Crossref] [PubMed]

S.-Y. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 39(23), 6600–6603 (2014).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO2 top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[Crossref] [PubMed]

S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[Crossref] [PubMed]

2013 (5)

S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21(18), 21224–21235 (2013).
[Crossref] [PubMed]

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

2012 (6)

2011 (3)

2009 (2)

2006 (1)

2005 (2)

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

1999 (1)

1928 (1)

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys. 51(3-4), 165–169 (1928).
[Crossref]

Abe, H.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Arimondo, E.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Baehr-Jones, T.

Ban, Y.

Barwicz, T.

Bason, M. G.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Born, M.

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys. 51(3-4), 165–169 (1928).
[Crossref]

Bowers, J. E.

Busch, Th.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Cao, T.

Cao, Y.

Chen, S.

Chen, X.

Chiu, Y.-F.

Chu, T.

Chung, H.-C.

Ciampini, D.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Dai, D.

del Campo, A.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Ding, Y.

Fan, S.

Fazio, R.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Fei, Y.

Fock, V.

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys. 51(3-4), 165–169 (1928).
[Crossref]

Frandsen, L. H.

Frellsen, L. F.

Fu, P.-H.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Galland, C.

Gan, F.

Gillet, J.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Giovannetti, V.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Guéry-Odelin, D.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Guo, D.

Haus, H. A.

He, S.

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt. 45(20), 4941–4946 (2006).
[Crossref] [PubMed]

Hochberg, M.

Hsiao, F.-C.

Hu, C.

Huang, D.-W.

Huillery, P.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Hvam, J. M.

Ibáñez, S.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Isoya, J.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Jhang, Y.-W.

Joannopoulos, J. D.

Johnson, S. G.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Lee, K.-S.

Li, W.

Lim, A. E.-J.

Lin, T.-Y.

Liu, H.-C.

Liu, L.

Lo, G.-Q.

Longhi, S.

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

Love, J. D.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Malossi, N.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Mannella, R.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Manolatou, C.

Martínez-Garaot, S.

S. Martínez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[Crossref] [PubMed]

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[Crossref] [PubMed]

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Modugno, M.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Morsch, O.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Muga, J. G.

S. Martínez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[Crossref] [PubMed]

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[Crossref] [PubMed]

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Niemeyer, I.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Niu, B.

Ohshima, T.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Onoda, S.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Ou, H.

Pan, T.-H.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Poon, J. K.

Qi, M.

Riesen, N.

Ruschhaupt, A.

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Sacher, W. D.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Sheng, Z.

Shi, Y.

Shim, J. H.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Sigmund, O.

Sun, X.

Suter, D.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Taniguchi, T.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Taylor, B. J.

Teraji, T.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Torrontegui, E.

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Tseng, S.-Y.

H.-C. Chung, K.-S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics,” Opt. Express 25(12), 13626–13634 (2017).
[Crossref] [PubMed]

S. Martínez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[Crossref] [PubMed]

X. Chen, R.-D. Wen, and S.-Y. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Opt. Express 24(16), 18322–18331 (2016).
[Crossref] [PubMed]

T.-H. Pan and S.-Y. Tseng, “Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity,” Opt. Express 23(8), 10405–10412 (2015).
[Crossref] [PubMed]

S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
[Crossref] [PubMed]

S.-Y. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 39(23), 6600–6603 (2014).
[Crossref] [PubMed]

S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[Crossref] [PubMed]

X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22(20), 24169–24178 (2014).
[Crossref] [PubMed]

S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21(18), 21224–21235 (2013).
[Crossref] [PubMed]

T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng, “Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides,” Opt. Express 20(21), 24085–24092 (2012).
[Crossref] [PubMed]

S.-Y. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
[Crossref] [PubMed]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tu, Y.-C.

Villeneuve, P. R.

Viteau, M.

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Wang, H.-W.

Wang, J.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, X.

Wang, Z.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Watts, M. R.

Wen, R.-D.

Wu, A.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Yamamoto, T.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Yang, S.

Yariv, A.

Yvind, K.

Zhang, J.

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Zhang, L.

Zhang, Y.

Zou, S.

Adv. At. Mol. Opt. Phys. (1)

E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

Nat. Photonics (2)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with 2.4×2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–378 (2015).
[Crossref]

Nat. Phys. (1)

M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[Crossref]

Opt. Express (18)

J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO2 top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng, “Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides,” Opt. Express 20(21), 24085–24092 (2012).
[Crossref] [PubMed]

S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21(18), 21224–21235 (2013).
[Crossref] [PubMed]

S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
[Crossref] [PubMed]

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
[Crossref] [PubMed]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref] [PubMed]

P.-H. Fu, Y.-C. Tu, and D.-W. Huang, “Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm,” Opt. Express 24(26), 30547–30561 (2016).
[Crossref] [PubMed]

X. Chen, R.-D. Wen, and S.-Y. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Opt. Express 24(16), 18322–18331 (2016).
[Crossref] [PubMed]

T.-H. Pan and S.-Y. Tseng, “Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity,” Opt. Express 23(8), 10405–10412 (2015).
[Crossref] [PubMed]

D. Guo and T. Chu, “Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity,” Opt. Express 25(8), 9160–9170 (2017).
[Crossref] [PubMed]

X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22(20), 24169–24178 (2014).
[Crossref] [PubMed]

S. Martínez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[Crossref] [PubMed]

H.-C. Chung, K.-S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics,” Opt. Express 25(12), 13626–13634 (2017).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (1)

S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[Crossref]

Phys. Rev. Lett. (1)

J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Z. Phys. (1)

M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys. 51(3-4), 165–169 (1928).
[Crossref]

Other (2)

FIMMWAVE / FIMMPROP, Photon Design Ltd, http://www.photond.com .

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) The cross-sectional view of the SOI strip waveguide. (b) The effective indices neff of the guided modes as a function of the width of the SOI strip waveguide.
Fig. 2
Fig. 2 (a) Device adiabaticity parameter c(z) for the linear taper (blue-dashed curve, the top axis labels the corresponding width W of the linear taper) and FAQUAD taper (red-solid curve) and the ideal FAQUAD taper (green-dotted line). (b) variation of z with W for the linear taper and the FAQUAD taper.
Fig. 3
Fig. 3 Simulated field distributions in the FAQUAD polarization mode converter using the (a) TM0 and (b) TE0 modes inputs. The lengths of the FAQUAD mode converter are L1 = L3 = 1μm and L2 = 22.5 μm. The widths are W0 = 0.5 μm, W1 = 0.6 μm, W2 = 0.9 μm, and W3 = 1 μm.
Fig. 4
Fig. 4 The relation between the conversion efficiency from TM0 to TE1 and the taper length L2 for the linear taper and the FAQUAD taper.
Fig. 5
Fig. 5 Simulated field distributions in the FAQUAD Y-junction using the (a) TE1 and (b) TE0 modes inputs. The length of the FAQUAD Y-junction L4 is 7.4μm, and the length of the stem waveguide Lstem is 1 μm.
Fig. 6
Fig. 6 Simulated transmission as a function of the Y-junction length L4 at ports A and B of the FAQUAD and linearly separating Y-junctions using (a) TE1 mode (b) TE0 mode of the stem waveguide as the input.
Fig. 7
Fig. 7 Top view of the FAQUAD PSR consisting of the FAQUAD taper and the FAQUAD Y-junction.
Fig. 8
Fig. 8 Simulated field distributions in the FAQUAD PSR using the (a) TM0 and (b) TE0 mode inputs. The total length Ltotal of the device is 32.9 μm.
Fig. 9
Fig. 9 Simulated transmission of the FAQUAD PSR as a function of the wavelength in the output (a) port A and (b) port B with L2 = 22.5 μm, L4 = 7.4 μm. The total length of the device is 32.9 μm.
Fig. 10
Fig. 10 Simulated transmission of the FAQUAD PSR as a function of the wavelength in the output (a) port A and (b) port B with L2 = 9.4 μm, L4 = 7.4 μm. The total length of the device is 19.8 μm.
Fig. 11
Fig. 11 Simulated transmission of the FAQUAD PSR as a function of the fabrication error Δw in the output (a) port A and (b) port B with L2 = 22.5 μm, L4 = 7.4 μm. The total length of the device is 32.9 μm.
Fig. 12
Fig. 12 Simulated transmission of the FAQUAD PSR as a function of the fabrication error Δw in the output (a) port A and (b) port B with L2 = 22.5 μm, L4 = 16.5 μm. The total length of the device is 42 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

c(z)| m| z |n β m β n |1 ,
m|n [ E mt × H nt * ] z ^ dS ,
c(z)=| [ E mt × z H nt * ] z ^ dS β m β n | .
c(z)=| m| z |n β m β n |=| dW dz m| d dW |n β m β n |=ε ,
c lin (z)= W f W i L | m| d dW |n β m β n |= W f W i L A(W) ,
dW dz = ε A(W) = W f W i L ε c lin .
dz dW = L W f W i c lin ε .
z(W)=L W i W c lin dW W i W f c lin dW .

Metrics