Abstract

An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-field microwave microscope and electron-spin-resonance detection: ruby crystal surface

Xiying Li, J. Adin Mann, Jr., and Massood Tabib-Azar
Appl. Opt. 45(10) 2191-2198 (2006)

Noncontact detection of Teflon inclusions in glass-fiber-reinforced polymer composites using terahertz imaging

Jin Zhang, Jie Wang, Xiaohui Han, Hong-Liang Cui, Changcheng Shi, Jinbo Zhang, and Yan Shen
Appl. Opt. 55(36) 10215-10222 (2016)

Infrared Detection of Fatigue Cracks and Other Near-Surface Defects

Edward J. Kubiak
Appl. Opt. 7(9) 1743-1747 (1968)

References

  • View by:
  • |
  • |
  • |

  1. A. Imtiaz, T. M. Wallis, and P. Kabos, “Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology,” IEEE Microw. Mag. 15(1), 52–64 (2014).
    [Crossref]
  2. A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
    [Crossref] [PubMed]
  3. C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
    [Crossref]
  4. A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
    [Crossref] [PubMed]
  5. A. N. Reznik, I. A. Shereshevsky, and N. K. Vdovicheva, “The near-field microwave technique for deep profiling of free carrier concentration in semiconductors,” J. Appl. Phys. 109(9), 145–148 (2011).
    [Crossref]
  6. S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
    [Crossref] [PubMed]
  7. J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
    [Crossref]
  8. L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
    [Crossref]
  9. E. H. Synge, “XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 6(35), 356–362 (1928).
    [Crossref]
  10. E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature 237(5357), 510–512 (1972).
    [Crossref] [PubMed]
  11. J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
    [Crossref]
  12. C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
    [Crossref]
  13. N. Qaddoumi, M. A. Khousa, and W. Saleh, “Near-field microwave imaging utilizing tapered rectangular waveguides,” in IEEE Instrum. Meas. Technol. Conf. (2004), pp. 174–177.
    [Crossref]
  14. S. M. Anlage, V. V. Talanov, and A. R. Schwartz, “Principles of near-field microwave microscopy,” in Scanning Probe Microscopy (Springer, 2007), pp. 215–253.
  15. A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
    [Crossref] [PubMed]
  16. K. Haddadi and T. Lasri, “Broadband Microwave Interferometry for Nondestructive Evaluation,” in 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) (2013), pp. 10–16.
  17. H. Bakli, K. Haddadi, and T. Lasri, “Interferometric technique for scanning near-field microwave microscopy applications,” IEEE Trans. Instrum. Meas. 63(5), 1281–1286 (2014).
    [Crossref]
  18. K. Haddadi, S. Gu, and T. Lasri, “Sensing of liquid droplets with a scanning near-field microwave microscope ☆,” Sens. Actuators A Phys. 230, 170–174 (2015).
    [Crossref]
  19. S. Gu, T. Lin, and T. Lasri, “Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope,” Appl. Phys. Lett. 108(24), 242903 (2016).
    [Crossref]
  20. S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
    [Crossref] [PubMed]
  21. J. Li, Z. Nemati, K. Haddadi, D. C. Wallace, and P. J. Burke, “Scanning Microwave Microscopy of Vital Mitochondria in Respiration Buffer,” arXiv Prepr. arXiv1802.05939 (2018).
  22. A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
    [Crossref]
  23. J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
    [Crossref]
  24. P. F. Mastro, Pressure Vessels and Pipes (John Wiley & Sons, Inc., 2016).
  25. S. Haladuick and M. R. Dann, “Risk-Based Maintenance Planning for Deteriorating Pressure Vessels With Multiple Defects,” J. Press. Vessel Technol. 139(4), 41602 (2017).
    [Crossref]
  26. X. Du, Y. Liu, and J. Zhang, “High Temperature Limit Analysis of Pressure Vessels and Piping with Local Wall-Thinning,” (2018).
    [Crossref]
  27. Y. Yang, J. Yang, and D. Fang, “Research progress on thermal protection materials and structures of hypersonic vehicles,” Appl. Math. Mech. 29(1), 51–60 (2008).
    [Crossref]
  28. D. Glass, “Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles,” in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (2008), p. 2682.
    [Crossref]
  29. E. A. Thornton, “Thermal structures-four decades of progress,” J. Aircr. 29(3), 485–498 (1992).
    [Crossref]
  30. C. Zhou, Z. Wang, and T. Hou, “Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles,” IOP Conf. Ser. Mater. Sci. Eng. 269(1), 12020 (2017).
    [Crossref]
  31. P. Wang, Y. Pei, and L. Zhou, “Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures,” NDT Int. 83, 32–37 (2016).
    [Crossref]
  32. G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
    [Crossref] [PubMed]
  33. R. C. Gonzalez and R. E. Woods, “Digital image processing,” Prentice Hall Int. 28(4), 484–486 (2005).

2017 (2)

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

S. Haladuick and M. R. Dann, “Risk-Based Maintenance Planning for Deteriorating Pressure Vessels With Multiple Defects,” J. Press. Vessel Technol. 139(4), 41602 (2017).
[Crossref]

2016 (3)

S. Gu, T. Lin, and T. Lasri, “Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope,” Appl. Phys. Lett. 108(24), 242903 (2016).
[Crossref]

P. Wang, Y. Pei, and L. Zhou, “Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures,” NDT Int. 83, 32–37 (2016).
[Crossref]

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

2015 (3)

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
[Crossref]

K. Haddadi, S. Gu, and T. Lasri, “Sensing of liquid droplets with a scanning near-field microwave microscope ☆,” Sens. Actuators A Phys. 230, 170–174 (2015).
[Crossref]

2014 (3)

H. Bakli, K. Haddadi, and T. Lasri, “Interferometric technique for scanning near-field microwave microscopy applications,” IEEE Trans. Instrum. Meas. 63(5), 1281–1286 (2014).
[Crossref]

A. Imtiaz, T. M. Wallis, and P. Kabos, “Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology,” IEEE Microw. Mag. 15(1), 52–64 (2014).
[Crossref]

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

2012 (1)

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

2011 (1)

A. N. Reznik, I. A. Shereshevsky, and N. K. Vdovicheva, “The near-field microwave technique for deep profiling of free carrier concentration in semiconductors,” J. Appl. Phys. 109(9), 145–148 (2011).
[Crossref]

2010 (1)

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

2008 (2)

Y. Yang, J. Yang, and D. Fang, “Research progress on thermal protection materials and structures of hypersonic vehicles,” Appl. Math. Mech. 29(1), 51–60 (2008).
[Crossref]

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

2007 (2)

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
[Crossref]

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
[Crossref] [PubMed]

2005 (2)

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

R. C. Gonzalez and R. E. Woods, “Digital image processing,” Prentice Hall Int. 28(4), 484–486 (2005).

2003 (1)

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

1996 (1)

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

1992 (1)

E. A. Thornton, “Thermal structures-four decades of progress,” J. Aircr. 29(3), 485–498 (1992).
[Crossref]

1972 (1)

E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

1928 (1)

E. H. Synge, “XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 6(35), 356–362 (1928).
[Crossref]

Ahn, J. J.

L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
[Crossref]

Amar, A.

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

Anlage, S. M.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
[Crossref] [PubMed]

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
[Crossref]

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Bakli, H.

H. Bakli, K. Haddadi, and T. Lasri, “Interferometric technique for scanning near-field microwave microscopy applications,” IEEE Trans. Instrum. Meas. 63(5), 1281–1286 (2014).
[Crossref]

Barry, J. D.

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
[Crossref]

Berweger, S.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Bettermann, A. D.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Black, R. C.

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

Blackburn, J. F.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Bourillot, E.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Brunschwig, B.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Calonne, O.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Cha, D.

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Chang, K. S.

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

Chen, X.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Clarke, R. N.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Dann, M. R.

S. Haladuick and M. R. Dann, “Risk-Based Maintenance Planning for Deteriorating Pressure Vessels With Multiple Defects,” J. Press. Vessel Technol. 139(4), 41602 (2017).
[Crossref]

Davydov, A. V.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Du, X.

X. Du, Y. Liu, and J. Zhang, “High Temperature Limit Analysis of Pressure Vessels and Piping with Local Wall-Thinning,” (2018).
[Crossref]

Fang, D.

Y. Yang, J. Yang, and D. Fang, “Research progress on thermal protection materials and structures of hypersonic vehicles,” Appl. Math. Mech. 29(1), 51–60 (2008).
[Crossref]

Foucault, M.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Friedman, B.

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Gao, C.

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

Glass, D.

D. Glass, “Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles,” in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (2008), p. 2682.
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, “Digital image processing,” Prentice Hall Int. 28(4), 484–486 (2005).

Gregory, A. P.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Gu, S.

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

S. Gu, T. Lin, and T. Lasri, “Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope,” Appl. Phys. Lett. 108(24), 242903 (2016).
[Crossref]

K. Haddadi, S. Gu, and T. Lasri, “Sensing of liquid droplets with a scanning near-field microwave microscope ☆,” Sens. Actuators A Phys. 230, 170–174 (2015).
[Crossref]

Haddadi, K.

K. Haddadi, S. Gu, and T. Lasri, “Sensing of liquid droplets with a scanning near-field microwave microscope ☆,” Sens. Actuators A Phys. 230, 170–174 (2015).
[Crossref]

H. Bakli, K. Haddadi, and T. Lasri, “Interferometric technique for scanning near-field microwave microscopy applications,” IEEE Trans. Instrum. Meas. 63(5), 1281–1286 (2014).
[Crossref]

K. Haddadi and T. Lasri, “Broadband Microwave Interferometry for Nondestructive Evaluation,” in 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) (2013), pp. 10–16.

Haladuick, S.

S. Haladuick and M. R. Dann, “Risk-Based Maintenance Planning for Deteriorating Pressure Vessels With Multiple Defects,” J. Press. Vessel Technol. 139(4), 41602 (2017).
[Crossref]

Hanham, S. M.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Happy, H.

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

Hodgetts, T. E.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Hu, B.

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

Imtiaz, A.

A. Imtiaz, T. M. Wallis, and P. Kabos, “Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology,” IEEE Microw. Mag. 15(1), 52–64 (2014).
[Crossref]

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
[Crossref]

John, J.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Kabos, P.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

A. Imtiaz, T. M. Wallis, and P. Kabos, “Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology,” IEEE Microw. Mag. 15(1), 52–64 (2014).
[Crossref]

Karbassi, A.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Khousa, M. A.

N. Qaddoumi, M. A. Khousa, and W. Saleh, “Near-field microwave imaging utilizing tapered rectangular waveguides,” in IEEE Instrum. Meas. Technol. Conf. (2004), pp. 174–177.
[Crossref]

Kim, J.

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Kim, M. S.

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Klein, N.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Kopanski, J. J.

L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
[Crossref]

Lasri, T.

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

S. Gu, T. Lin, and T. Lasri, “Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope,” Appl. Phys. Lett. 108(24), 242903 (2016).
[Crossref]

K. Haddadi, S. Gu, and T. Lasri, “Sensing of liquid droplets with a scanning near-field microwave microscope ☆,” Sens. Actuators A Phys. 230, 170–174 (2015).
[Crossref]

H. Bakli, K. Haddadi, and T. Lasri, “Interferometric technique for scanning near-field microwave microscopy applications,” IEEE Trans. Instrum. Meas. 63(5), 1281–1286 (2014).
[Crossref]

K. Haddadi and T. Lasri, “Broadband Microwave Interferometry for Nondestructive Evaluation,” in 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) (2013), pp. 10–16.

Lee, J.

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Lee, K.

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Lees, K.

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Lesniewska, E.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Lewis, N. S.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Li, H.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Lin, T.

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

S. Gu, T. Lin, and T. Lasri, “Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope,” Appl. Phys. Lett. 108(24), 242903 (2016).
[Crossref]

Liu, Y.

X. Du, Y. Liu, and J. Zhang, “High Temperature Limit Analysis of Pressure Vessels and Piping with Local Wall-Thinning,” (2018).
[Crossref]

Long, C. J.

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

Lu, H.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Ma, Y.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Ma, Z.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
[Crossref] [PubMed]

Melngailis, J.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
[Crossref] [PubMed]

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
[Crossref]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Obeng, Y. S.

L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
[Crossref]

Paulson, C. A.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Pei, Y.

P. Wang, Y. Pei, and L. Zhou, “Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures,” NDT Int. 83, 32–37 (2016).
[Crossref]

Peng, C.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Pieterick, A.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Plassard, C.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Qaddoumi, N.

N. Qaddoumi, M. A. Khousa, and W. Saleh, “Near-field microwave imaging utilizing tapered rectangular waveguides,” in IEEE Instrum. Meas. Technol. Conf. (2004), pp. 174–177.
[Crossref]

Reznik, A. N.

A. N. Reznik, I. A. Shereshevsky, and N. K. Vdovicheva, “The near-field microwave technique for deep profiling of free carrier concentration in semiconductors,” J. Appl. Phys. 109(9), 145–148 (2011).
[Crossref]

Rossignol, J.

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Ruf, D.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Saleh, W.

N. Qaddoumi, M. A. Khousa, and W. Saleh, “Near-field microwave imaging utilizing tapered rectangular waveguides,” in IEEE Instrum. Meas. Technol. Conf. (2004), pp. 174–177.
[Crossref]

Sanford, N. A.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Shereshevsky, I. A.

A. N. Reznik, I. A. Shereshevsky, and N. K. Vdovicheva, “The near-field microwave technique for deep profiling of free carrier concentration in semiconductors,” J. Appl. Phys. 109(9), 145–148 (2011).
[Crossref]

Stancliff, R.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Synge, E. H.

E. H. Synge, “XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 6(35), 356–362 (1928).
[Crossref]

Takeuchi, I.

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

Tanbakuchi, H.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Tang, L.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Thornton, E. A.

E. A. Thornton, “Thermal structures-four decades of progress,” J. Aircr. 29(3), 485–498 (1992).
[Crossref]

Tselev, A.

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
[Crossref] [PubMed]

van der Weide, D. W.

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

Vdovicheva, N. K.

A. N. Reznik, I. A. Shereshevsky, and N. K. Vdovicheva, “The near-field microwave technique for deep profiling of free carrier concentration in semiconductors,” J. Appl. Phys. 109(9), 145–148 (2011).
[Crossref]

Velazquez, J. M.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Vlahacos, C. P.

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

Wallis, T. M.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

A. Imtiaz, T. M. Wallis, and P. Kabos, “Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology,” IEEE Microw. Mag. 15(1), 52–64 (2014).
[Crossref]

Wang, G.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

Wang, P.

P. Wang, Y. Pei, and L. Zhou, “Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures,” NDT Int. 83, 32–37 (2016).
[Crossref]

Wang, Y.

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Weber, J. C.

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Wellstood, F. C.

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, “Digital image processing,” Prentice Hall Int. 28(4), 484–486 (2005).

Xiang, X.

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

Xiang, X. D.

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

Yang, H.

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

Yang, J.

Y. Yang, J. Yang, and D. Fang, “Research progress on thermal protection materials and structures of hypersonic vehicles,” Appl. Math. Mech. 29(1), 51–60 (2008).
[Crossref]

Yang, Y.

Y. Yang, J. Yang, and D. Fang, “Research progress on thermal protection materials and structures of hypersonic vehicles,” Appl. Math. Mech. 29(1), 51–60 (2008).
[Crossref]

You, L.

L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
[Crossref]

Zhang, J.

X. Du, Y. Liu, and J. Zhang, “High Temperature Limit Analysis of Pressure Vessels and Piping with Local Wall-Thinning,” (2018).
[Crossref]

Zhou, L.

P. Wang, Y. Pei, and L. Zhou, “Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures,” NDT Int. 83, 32–37 (2016).
[Crossref]

Zhou, X.

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

Appl. Math. Mech. (1)

Y. Yang, J. Yang, and D. Fang, “Research progress on thermal protection materials and structures of hypersonic vehicles,” Appl. Math. Mech. 29(1), 51–60 (2008).
[Crossref]

Appl. Phys. Lett. (4)

A. Imtiaz, S. M. Anlage, J. D. Barry, and J. Melngailis, “Nanometer-scale material contrast imaging with a near-field microwave microscope,” Appl. Phys. Lett. 90(14), 143106 (2007).
[Crossref]

J. Lee, C. J. Long, H. Yang, X. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2. 5 GHz using near-field microwave microscopy,” Appl. Phys. Lett. 97(18), 5–7 (2010).
[Crossref]

C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, “Near‐field scanning microwave microscope with 100 μm resolution,” Appl. Phys. Lett. 69(21), 3272–3274 (1996).
[Crossref]

S. Gu, T. Lin, and T. Lasri, “Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope,” Appl. Phys. Lett. 108(24), 242903 (2016).
[Crossref]

IEEE Microw. Mag. (1)

A. Imtiaz, T. M. Wallis, and P. Kabos, “Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology,” IEEE Microw. Mag. 15(1), 52–64 (2014).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

H. Bakli, K. Haddadi, and T. Lasri, “Interferometric technique for scanning near-field microwave microscopy applications,” IEEE Trans. Instrum. Meas. 63(5), 1281–1286 (2014).
[Crossref]

J. Aircr. (1)

E. A. Thornton, “Thermal structures-four decades of progress,” J. Aircr. 29(3), 485–498 (1992).
[Crossref]

J. Appl. Phys. (1)

A. N. Reznik, I. A. Shereshevsky, and N. K. Vdovicheva, “The near-field microwave technique for deep profiling of free carrier concentration in semiconductors,” J. Appl. Phys. 109(9), 145–148 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. You, J. J. Ahn, Y. S. Obeng, and J. J. Kopanski, “Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope,” J. Phys. D Appl. Phys. 49(4), 45502 (2015).
[Crossref]

J. Press. Vessel Technol. (1)

S. Haladuick and M. R. Dann, “Risk-Based Maintenance Planning for Deteriorating Pressure Vessels With Multiple Defects,” J. Press. Vessel Technol. 139(4), 41602 (2017).
[Crossref]

Lond. Edinb. Dublin Philos. Mag. J. Sci. (1)

E. H. Synge, “XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 6(35), 356–362 (1928).
[Crossref]

Meas. Sci. Technol. (2)

C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, “Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries,” Meas. Sci. Technol. 16(1), 248–260 (2005).
[Crossref]

J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha, and B. Friedman, “Development of a near-field scanning microwave microscope using a tunable resonance cavity for high resolution,” Meas. Sci. Technol. 14(1), 7–12 (2003).
[Crossref]

Nano Lett. (1)

S. Berweger, J. C. Weber, J. John, J. M. Velazquez, A. Pieterick, N. A. Sanford, A. V. Davydov, B. Brunschwig, N. S. Lewis, T. M. Wallis, and P. Kabos, “Microwave Near-Field Imaging of Two-Dimensional Semiconductors,” Nano Lett. 15(2), 1122–1127 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

S. Gu, X. Zhou, T. Lin, H. Happy, and T. Lasri, “Broadband non-contact characterization of epitaxial graphene by near-field microwave microscopy,” Nanotechnology 28(33), 335702 (2017).
[Crossref] [PubMed]

Nature (1)

E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

NDT Int. (1)

P. Wang, Y. Pei, and L. Zhou, “Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures,” NDT Int. 83, 32–37 (2016).
[Crossref]

PLoS One (1)

G. Wang, Y. Wang, H. Li, X. Chen, H. Lu, Y. Ma, C. Peng, Y. Wang, and L. Tang, “Morphological background detection and illumination normalization of text image with poor lighting,” PLoS One 9(11), e110991 (2014).
[Crossref] [PubMed]

Prentice Hall Int. (1)

R. C. Gonzalez and R. E. Woods, “Digital image processing,” Prentice Hall Int. 28(4), 484–486 (2005).

Rev. Sci. Instrum. (2)

A. Karbassi, D. Ruf, A. D. Bettermann, C. A. Paulson, D. W. van der Weide, H. Tanbakuchi, and R. Stancliff, “Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement,” Rev. Sci. Instrum. 79(9), 094706 (2008).
[Crossref] [PubMed]

A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis, “Broadband dielectric microwave microscopy on micron length scales,” Rev. Sci. Instrum. 78(4), 044701 (2007).
[Crossref] [PubMed]

Sens. Actuators A Phys. (2)

K. Haddadi, S. Gu, and T. Lasri, “Sensing of liquid droplets with a scanning near-field microwave microscope ☆,” Sens. Actuators A Phys. 230, 170–174 (2015).
[Crossref]

J. Rossignol, C. Plassard, E. Bourillot, O. Calonne, M. Foucault, and E. Lesniewska, “Non-destructive technique to detect local buried defects in metal sample by scanning microwave microscopy,” Sens. Actuators A Phys. 186, 219–222 (2012).
[Crossref]

Ultramicroscopy (1)

A. P. Gregory, J. F. Blackburn, K. Lees, R. N. Clarke, T. E. Hodgetts, S. M. Hanham, and N. Klein, “Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope,” Ultramicroscopy 161, 137–145 (2016).
[Crossref] [PubMed]

Other (8)

J. Li, Z. Nemati, K. Haddadi, D. C. Wallace, and P. J. Burke, “Scanning Microwave Microscopy of Vital Mitochondria in Respiration Buffer,” arXiv Prepr. arXiv1802.05939 (2018).

K. Haddadi and T. Lasri, “Broadband Microwave Interferometry for Nondestructive Evaluation,” in 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) (2013), pp. 10–16.

N. Qaddoumi, M. A. Khousa, and W. Saleh, “Near-field microwave imaging utilizing tapered rectangular waveguides,” in IEEE Instrum. Meas. Technol. Conf. (2004), pp. 174–177.
[Crossref]

S. M. Anlage, V. V. Talanov, and A. R. Schwartz, “Principles of near-field microwave microscopy,” in Scanning Probe Microscopy (Springer, 2007), pp. 215–253.

X. Du, Y. Liu, and J. Zhang, “High Temperature Limit Analysis of Pressure Vessels and Piping with Local Wall-Thinning,” (2018).
[Crossref]

P. F. Mastro, Pressure Vessels and Pipes (John Wiley & Sons, Inc., 2016).

C. Zhou, Z. Wang, and T. Hou, “Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles,” IOP Conf. Ser. Mater. Sci. Eng. 269(1), 12020 (2017).
[Crossref]

D. Glass, “Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles,” in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (2008), p. 2682.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the self-built high temperature NSMM setup.
Fig. 2
Fig. 2 The near-field microwave microscope probe: (a) design drawing; (b) simulation of the fringe electric field at 1 GHz near the open end of the probe in free space; (c) simulation of the electric field distribution on a metal surface beneath the probe at a standoff distance of 0.5 mm; (d) variation of normalized |S11| with increasing standoff distance.
Fig. 3
Fig. 3 Heating curves of the cavity, specimen surface, probe tip and probe after water cooling.
Fig. 4
Fig. 4 Near-field probe test: (a) line scanning of a metal grating with line and gap width of 0.5 mm; (b) reflection spectra over an aluminium plate with a standoff distance of 0.5 mm at high temperatures. (input power: 0 dBm, IFBW: 1 kHz); (c) average reflection spectrum with high temperature noise envelope; (d) comparison of reflection spectra difference between 20°C and 500°C and reflection spectra at 20°C.
Fig. 5
Fig. 5 Mapping of S11 at room temperature at 1GHz: (a) amplitude, (b) phase, (c) 6 dB method processed phase.
Fig. 6
Fig. 6 Scanning amplitude and phase images of aluminium plate at 100°C, 200°C, 300°C, 400°C, and 500°C.
Fig. 7
Fig. 7 Processing of background noise removing algorithm: (a) background image; (b) background removed image; (c) enhanced image, (d) line distributions through hole centers.
Fig. 8
Fig. 8 Scanning amplitude and phase images of a GFRP plate at 30GHz at 20°C, 50°C, 100°C, 150°C: (a) raw images; (b) post processed images.
Fig. 9
Fig. 9 (a) Scanning amplitude and phase images of inner honeycomb cores at 20°C and 50°C, (b) line distribution of the phase, (c) phase mapping after edge detection processing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 11 = Z S Z 0 Z S + Z 0 ,
Z S = μ 0 μ r ε 0 ε r .
g w ( f )=f γ B ( f ),
g b ( f )= ϕ B ( f )f,

Metrics