Abstract

We demonstrate a nonmechanical, on-chip optical beam-steering device using a photonic-crystal waveguide with a doubly periodic structure that repeats the increase and decrease of the hole diameter. We fabricated the device using a complementary metal–oxide–semiconductor process. We obtained a beam-deflection angle of 24° in the longitudinal direction, while maintaining a divergence angle of 0.3°. Four such waveguides were integrated, and one was selected by a Mach–Zehnder optical switch. We obtained lateral beam steering by placing a cylindrical lens above these waveguides. By combining the lateral and longitudinal beam steering, we were able to scan the collimated beam in two dimensions, with 80 × 4 resolution points.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermally controlled Si photonic crystal slow light waveguide beam steering device

Goro Takeuchi, Yosuke Terada, Moe Takeuchi, Hiroshi Abe, Hiroyuki Ito, and Toshihiko Baba
Opt. Express 26(9) 11529-11537 (2018)

Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing

Hiroyuki Ito, Tomoki Tatebe, Hiroshi Abe, and Toshihiko Baba
Opt. Express 26(20) 26145-26155 (2018)

Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating

Keisuke Kondo, Tomoki Tatebe, Shoji Hachuda, Hiroshi Abe, Fumio Koyama, and Toshihiko Baba
Opt. Lett. 42(23) 4990-4993 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
    [Crossref]
  2. T. K. Chan, M. Megens, B. W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
    [Crossref] [PubMed]
  3. Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
    [Crossref]
  4. L. Zou, M. Cryan, and M. Klemm, “Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects,” Opt. Express 22(20), 24142–24148 (2014).
    [Crossref] [PubMed]
  5. J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
    [Crossref] [PubMed]
  6. S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
  7. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  8. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  9. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  10. K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42(23), 4990–4993 (2017).
    [Crossref] [PubMed]
  11. X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
    [Crossref]
  12. T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
    [Crossref] [PubMed]
  13. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
    [Crossref]
  14. G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
    [Crossref] [PubMed]
  15. Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura, and T. Baba, “Optimized optical coupling to silica-clad photonic crystal waveguides,” Opt. Lett. 42(22), 4695–4698 (2017).
    [Crossref] [PubMed]

2017 (5)

2016 (1)

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

2015 (1)

2014 (1)

2013 (2)

2012 (1)

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
[Crossref]

2011 (1)

2008 (1)

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

2007 (1)

2002 (1)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

Abe, H.

Abediasl, H.

Anderson, M.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Arias, P.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Baba, T.

Baets, R.

Baofeng, D.

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

Chan, T. K.

Chang-Hasnain, C. J.

Coldren, L. A.

Cole, D. B.

Cryan, M.

Davis, S. R.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

DiLazaro, T.

Doylend, J. K.

Dupont, S.

J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
[Crossref] [PubMed]

Foshee, J.

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

Fukaya, N.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

Gamble, J. D.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Gann, D.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Gazalet, J.

J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
[Crossref] [PubMed]

Gonzalez-Jorge, H.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Gu, X.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
[Crossref]

Hachuda, S.

Hashemi, H.

Heck, M. J. R.

Horsley, D. A.

Ishikura, N.

Iwai, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

Kastelik, J. C.

J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
[Crossref] [PubMed]

Klemm, M.

Kondo, K.

Koyama, F.

K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42(23), 4990–4993 (2017).
[Crossref] [PubMed]

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
[Crossref]

Luey, B.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Martinez-Sanchez, J.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Matsutani, A.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
[Crossref]

Megens, M.

Miyasaka, K.

Molchanov, V. Y.

J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
[Crossref] [PubMed]

Motegi, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

Nehmetallah, G.

Peters, J. D.

Poulton, C. V.

Puente, I.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Raval, M.

Roelkens, G.

Rommel, S. D.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Sakai, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

Shimada, T.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
[Crossref]

Tamura, T.

Tang, S.

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

Tang, Y.

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

Tatebe, T.

Terada, Y.

Thourhout, D. V.

Vermeulen, D.

Wang, J.

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

Wang, X.

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

Watanabe, Y.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

Watts, M. R.

Wu, M. C.

Wyras, J.

Yaacobi, A.

Yoo, B. W.

Yushkov, K. B.

J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
[Crossref] [PubMed]

Ziemkiewicz, M.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Zou, L.

IEEE J. Quantum Electron. (1)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38(7), 743–752 (2002).
[Crossref]

IEEE Photonics J. (1)

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J. 4(5), 1712–1719 (2012).
[Crossref]

Measurement (1)

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Proc. SPIE (2)

Y. Tang, J. Wang, X. Wang, D. Baofeng, S. Tang, and J. Foshee, “KTN based electro-optic beam scanner,” Proc. SPIE 7135, 713538 (2008).
[Crossref]

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).

Ultrasonics (1)

J. C. Kastelik, S. Dupont, K. B. Yushkov, V. Y. Molchanov, and J. Gazalet, “Double acousto-optic deflector system for increased scanning range of laser beams,” Ultrasonics 80, 62–65 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of a Si (LS)PCW beam-steering device with a doubly periodic structure. (a) Single (LS)PCW for beam steering in the θ-direction. (b) Multiple (LS)PCWs for beam steering in the ϕ-direction. The abbreviations NFP and FFP denote the “near-field pattern” and “far-field pattern,” respectively. See text for additional details.
Fig. 2
Fig. 2 Theoretical characteristics of a doubly periodic LSPCW. (a) Photonic band. The gray zone depicts the SiO2 light cone. (b) Group index spectrum. (c) Radiation angle.
Fig. 3
Fig. 3 Calculation of (a) radiation coefficient αrad, (b) beam divergence δθ (solid lines) and insertion loss (dotted and dashed lines) and (c) fan beam profile projected on the θ-ϕ plane. For the estimation of loss in (b), the downward radiation and internal reflection are neglected. For (c), a vertically symmetric structural model, neglecting the bottom substrate, and θ = 2.2° are assumed. The weak oscillation in the ϕ profile originates not from the device structure but from unwanted reflection at boundaries of calculation model.
Fig. 4
Fig. 4 Fabricated device of Δr = 10 nm and its 1D beam steering characteristics. (a) Scanning electron micrograph of the fabricated device. The large and small holes are light-blue and dark-blue colored, respectively. (b) Observed NFP of the light propagation and its decay along the waveguide. The NFP is 10 times expanded in the lateral direction. The gray line is row data of the intensity profile and black line is the linear fitting. (c) Observed FFP of the fan beam. (d) θ beam steering for each 1 nm change in λ. (e) Beam angle; the black line shows the calculated values. (f) Beam divergence.
Fig. 5
Fig. 5 Beam-steering characteristics of the fabricated device in the ϕ-direction, which was observed by the same setup as for Fig. 4. (a) LSPCW array. (b) Three 1 × 2, heater-controlled, Mach–Zehnder optical switch. (c) Appearance of the device chip and rod lens. (d) Profile of the point beam. (e) NFP of light propagating in the four LSPCWs #1–#4. (f) FFP of ϕ-directional beam steering.
Fig. 6
Fig. 6 2D beam steering. (a) Lateral beam divergence of the point beam with θ-directional steering. The inset shows the FFP. (b) 2D beam steering by λ scanning and LSPCW switching, where the position of the rod lens was adjusted for each θ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ=sin( β k 0 λ 2a ) ,
Loss[dB]=10 log 10 0 L ζ α rad exp[( α rad + α loss )z]dz ,

Metrics