Abstract

The first demonstration and characterization of ultrafast laser-inscribed mid-infrared (mid-IR) waveguides in Ge33As12Se55 chalcogenide glass (IG2) is presented. From mode profile and throughput measurements, combined with modelling, the characteristics of the waveguides inscribed in IG2 are studied at 7.8 μm, and compared to those of waveguides inscribed in gallium lanthanum sulfide for reference. Two methods to estimate the local variation of refractive index induced by the inscription process are presented, which indicate a variation of ~0.010 to 0.015 across the inscription parameters investigated. This variation, together with a higher robustness of the material to inscription and large transparency covering the entire mid-IR spectral domain, suggest that IG2 has great potential for integrated optical applications in the mid-IR developed through the ultrafast laser inscription method.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization

Helen L Butcher, David Lee, Richard Brownsword, David G MacLachlan, Robert R Thomson, and Damien Weidmann
Opt. Express 25(26) 33617-33628 (2017)

Ultrafast laser-inscribed mid-infrared evanescent field directional couplers in GeAsSe chalcogenide glass

Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, and Damien Weidmann
OSA Continuum 1(1) 221-228 (2018)

Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications

Giorgos Demetriou, Jean-Philippe Bérubé, Réal Vallée, Younès Messaddeq, Christian R. Petersen, Deepak Jain, Ole Bang, Chris Craig, Daniel W. Hewak, and Ajoy K Kar
Opt. Express 24(6) 6350-6358 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Schädle and B. Mizaikoff, “Mid-infrared waveguides: A perspective,” Appl. Spectrosc. 70(10), 1625–1638 (2016).
    [PubMed]
  2. I. S. Glass, Handbook of Infrared Astronomy (Cambridge University, 1999).
  3. H.-K. Hsiao, K. A. Winick, J. D. Monnier, and J.-P. Berger, “An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 µm,” Opt. Express 17(21), 18489–18500 (2009).
    [PubMed]
  4. A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39(16), 4820–4822 (2014).
    [PubMed]
  5. J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).
  6. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
    [PubMed]
  7. V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quant. 23(2), 8200612 (2017).
  8. R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).
  9. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [PubMed]
  10. A. Arriola, S. Gross, M. Ams, T. Gretzinger, D. Le Coq, R. P. Wang, H. Ebendorff-Heidepriem, J. Sanghera, S. Bayya, L. B. Shaw, M. Ireland, P. Tuthill, and M. J. Withford, “Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials,” Opt. Mater. Express 7(3), 698–711 (2017).
  11. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012).
    [PubMed]
  12. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [PubMed]
  13. Vitron IG2 datasheet, http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php .
  14. Optical constants of Vitron IG2, https://refractiveindex.info/?shelf=glass&book=VITRON-IG&page=IG2 .
  15. D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).
  16. H. L. Butcher, D. Lee, R. Brownsword, D. G. MacLachlan, R. R. Thomson, and D. Weidmann, “Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization,” Opt. Express 25(26), 33617–33628 (2017).
  17. Gallium Lanthanum Sulphide (GLS) datasheet, https://www.crystran.co.uk/optical-materials/gallium-lanthanum-sulphide-gls .
  18. D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-infrared volume phase gratings manufactured using ultrafast laser inscription,” Opt. Mater. Express 3(10), 1616–1623 (2013).
  19. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006).
    [PubMed]
  20. R. R. Thomson, N. D. Psaila, H. T. Bookey, D. T. Reid, and A. K. Kar, “Controlling the cross-section of ultrafast laser inscribed optical waveguides,” in Femtosecond Laser Micromachining, R. Osselame, G. Cerullo and R. Ramponi, ed. (Springer-Verlag, 2012).
  21. K. Okamoto, Fundamentals of Optical Waveguides, (Elsevier, 2006).
  22. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital holographic measurement,” Appl. Opt. 51(10), 1503–1515 (2012).
    [PubMed]
  23. P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STh1G.1.

2017 (3)

2016 (2)

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

T. Schädle and B. Mizaikoff, “Mid-infrared waveguides: A perspective,” Appl. Spectrosc. 70(10), 1625–1638 (2016).
[PubMed]

2014 (1)

2013 (2)

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-infrared volume phase gratings manufactured using ultrafast laser inscription,” Opt. Mater. Express 3(10), 1616–1623 (2013).

2012 (3)

2011 (1)

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).

2009 (1)

2008 (1)

R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).

2006 (2)

Agarwal, A.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Allen, P. J.

Allington-Smith, J.

Ams, M.

Anheier, N. C.

Arezki, B.

Arriola, A.

Bayya, S.

Berger, J.-P.

Birks, T. A.

Bland-Hawthorn, J.

Brown, G.

Brownsword, R.

Brownsword, R. A.

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

Butcher, H. L.

H. L. Butcher, D. Lee, R. Brownsword, D. G. MacLachlan, R. R. Thomson, and D. Weidmann, “Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization,” Opt. Express 25(26), 33617–33628 (2017).

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

Choudhury, D.

Cunningham, C. R.

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-infrared volume phase gratings manufactured using ultrafast laser inscription,” Opt. Mater. Express 3(10), 1616–1623 (2013).

Ebendorff-Heidepriem, H.

Fromherz, T.

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).

Gretzinger, T.

Gross, S.

Harris, R. J.

Hensley, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Hô, N.

Hsiao, H.-K.

Hu, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Ireland, M.

Jakoby, B.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quant. 23(2), 8200612 (2017).

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).

Jericho, M. H.

Jha, A.

Jose, G.

Kanka, M.

Kar, A.

Kasberger, J.

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).

Kern, P.

Kimerling, L. C.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Kreuzer, H. J.

Krishnaswami, K.

Labadie, L.

Lavchiev, V. M.

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quant. 23(2), 8200612 (2017).

Le Coq, D.

Lee, D.

Lin, P. T.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Luzinov, I.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

MacLachlan, D. G.

Marshall, G. D.

Martin, G.

Mizaikoff, B.

Monnier, J. D.

Mukherjee, S.

Musgraves, J. D.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Myers, T. L.

Phillips, M. C.

Psaila, N.

Qiao, H.

Richardson, K.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Riesenberg, R.

Riley, B. J.

Ródenas, A.

Saeed, A.

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).

Sanghera, J.

Schädle, T.

Schnetler, H.

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

Shaw, L. B.

Singh, V.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Soref, R.

R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).

Thomson, R.

Thomson, R. R.

Tuthill, P.

Wang, R. P.

Weidmann, D.

H. L. Butcher, D. Lee, R. Brownsword, D. G. MacLachlan, R. R. Thomson, and D. Weidmann, “Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization,” Opt. Express 25(26), 33617–33628 (2017).

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

Winick, K. A.

Withford, M. J.

Appl. Opt. (1)

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quant. (1)

V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quant. 23(2), 8200612 (2017).

Lab Chip (1)

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[PubMed]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (2)

Proc. SPIE (2)

R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008).

D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016).

Vib. Spectrosc. (1)

J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011).

Other (7)

I. S. Glass, Handbook of Infrared Astronomy (Cambridge University, 1999).

Gallium Lanthanum Sulphide (GLS) datasheet, https://www.crystran.co.uk/optical-materials/gallium-lanthanum-sulphide-gls .

Vitron IG2 datasheet, http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php .

Optical constants of Vitron IG2, https://refractiveindex.info/?shelf=glass&book=VITRON-IG&page=IG2 .

R. R. Thomson, N. D. Psaila, H. T. Bookey, D. T. Reid, and A. K. Kar, “Controlling the cross-section of ultrafast laser inscribed optical waveguides,” in Femtosecond Laser Micromachining, R. Osselame, G. Cerullo and R. Ramponi, ed. (Springer-Verlag, 2012).

K. Okamoto, Fundamentals of Optical Waveguides, (Elsevier, 2006).

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STh1G.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Images of fabricated waveguides. (a) IG2 waveguide facet, (b) IG2 waveguide from surface, (c)–(e) GLS waveguides, showing single, double and triple inscription layers, respectively.
Fig. 2
Fig. 2 Schematic of characterization equipment used to interrogate waveguides, shown from above. Mirrors M1–M4 were used for beam steering. Lenses L1 and L2 were used in a telescope arrangement to expand the laser beam. Objectives MO1 and MO2 were used to couple into and out of the waveguide, with measurement made using a camera or power meter at position A. The polarization state of the incident beam ‘E’ on the waveguide facet was controlled by inserting or removing the half-wave plate (HWP), to interrogate the polarized waveguide modes ‘TE’ and ‘TM’.
Fig. 3
Fig. 3 Fundamental normalized intensity output mode profiles for (a) IG2 and (b) GLS, and residuals from fit of 2-dimensional elliptical Gaussian surface to data, for (c) IG2 and (d) GLS. The GLS profile was measured in the TM polarization state, had a horizontal cross-section of 20 μm and was inscribed with a pulse energy of 58.2 nJ. The IG2 profile was measured in the TE polarization state, had a horizontal cross-section of 19.6 μm and was inscribed with a pulse energy of 12.44 nJ.
Fig. 4
Fig. 4 Higher order waveguide output mode profiles. (a) IG2, measured mode was the TE21 mode, for the waveguide inscribed with 23.4 μm horizontal cross-section, and 14 nJ pulse energy. (b). GLS, measured mode was the TM21 mode, for the waveguide inscribed with 36 μm horizontal cross-section, 34.63 nJ pulse energy, and 4 mm inscription speed.
Fig. 5
Fig. 5 Measured (points) and modeled (contour) horizontal MFD as a function of inscribed waveguide horizontal cross-section and modeled Δn, for individual pulse energies increasing across (a)–(i). All data presented was measured in the TE polarization state. Shaded regions define the approximate range of Δn for measured waveguides, with the exception of some outliers. All plots are on the same scale.
Fig. 6
Fig. 6 (a) Increasing Δn with inscription pulse energy for IG2. Data points are median for each corresponding shaded region in Fig. 5, with error bars defining the full range. Dashed line is unweighted linear fit to data. (b) Relationship between horizontal MFD and horizontal waveguide cross-section for GLS.
Fig. 7
Fig. 7 Higher order mode cut-on for (a) IG2 and (b) GLS waveguides. Contours indicate the effective index of the higher order mode; the colored region indicates where the mode is supported (neff > nclad). The points on the IG2 plot indicate waveguides fabricated with specific core dimensions and pulse energies (top axis). A black point indicates where the TE21 mode was observed at the output, while a grey point indicates the TE21 mode was not observed.
Fig. 8
Fig. 8 Calculation of relationship between inscription pulse energy and refractive index modification. (a) Waveguide horizontal cross-section vs. inscription pulse energy. (b) Waveguide horizontal cross-section vs. modeled refractive index modification. (c) Linear fit between measured pulse energy and modelled refractive index modification, indicating the refractive index modification achieved on inscription.
Fig. 9
Fig. 9 Measured and modelled mode profiles in IG2. (a) Measured and (b) modelled fundamental mode profile of a single-mode IG2 waveguide, fabricated with 19.8 μm horizontal cross-section and 12.44 nJ pulse energy. Δn for the model was 0.0113, from Fig. 7(a). (c) Measured and (d) modelled mode profile of the TE21 mode of a multimode IG2 waveguide, fabricated with 23.4 μm inscribed horizontal cross-section and 14.0 nJ pulse energy. Δn for the model was 0.0125, from Fig. 7(a).
Fig. 10
Fig. 10 (a) Measured and (b) modelled output profile for a single-mode GLS waveguide. These plots show coupling to adjacent waveguides inscribed 60 μm to each side of the center waveguide. Model parameters were: Δn = 0.0047; waveguide cross-section = 20 μm; waveguide separation = 60 μm.

Tables (1)

Tables Icon

Table 1 Waveguide fabrication parameter range

Metrics