Abstract

Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Energy-aware virtual network embedding in flexi-grid networks

Rongping Lin, Shan Luo, Haoran Wang, and Sheng Wang
Opt. Express 25(24) 29699-29713 (2017)

Location-Aware Energy Efficient Virtual Network Embedding in Software-Defined Optical Data Center Networks

Yue Zong, Yanni Ou, Ali Hammad, Koteswararao Kondepu, Reza Nejabati, Dimitra Simeonidou, Yejun Liu, and Lei Guo
J. Opt. Commun. Netw. 10(7) B58-B70 (2018)

Survivable Impairment-Constrained Virtual Optical Network Mapping in Flexible-Grid Optical Networks

Weisheng Xie, Jason P. Jue, Qiong Zhang, Xi Wang, Qingya She, Paparao Palacharla, and Motoyoshi Sekiya
J. Opt. Commun. Netw. 6(11) 1008-1017 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Inc., “Cisco visual networking index: forecast and methodology, 2016–2021” (2016).
  2. N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Comput. Netw. 54(5), 862–876 (2010).
    [Crossref]
  3. N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with coordinated node and link mapping,” in Proc. INFOCOM, 783–791 (2009).
  4. X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).
  5. H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).
  6. L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
    [Crossref]
  7. A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
    [Crossref]
  8. F. Zhou, M. Ju, and A. Ait-Ouahmed, “Joint optimization for multicast provisioning in mixed-line-rate optical networks with column generation approach,” J. Lightwave Technol.,  36(3), 637–649 (2018).
    [Crossref]
  9. I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun. 40(7), 1171–1182 (1992).
    [Crossref]
  10. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  11. A. Cai, J. Guo, R. Lin, G. Shen, and M. Zukerman, “Multicast routing and distance-adaptive spectrum allocation in elastic optical networks with shared protection,” J. Lightwave Technol. 34(17), 4076–4088 (2016).
    [Crossref]
  12. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
    [Crossref]
  13. A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
    [Crossref]
  14. A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).
  15. L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. Int. Conf. Commun., 3466–3470 (2013).
  16. L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightwave Technol. 32(3), 450–460 (2014).
    [Crossref]
  17. J. Zhao and M. Pearce, “Virtual topology mapping in elastic optical networks,” in Proc. Int. Conf. Commun., 3904–3908 (2013).
  18. S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
    [Crossref]
  19. M. R. Raza, M. Fiorani, A. Rostami, P. Ohlen, L. Wosinska, and P. Monti, “Dynamic slicing approach for multi-tenant 5G transport networks [invited],” J. Opt. Commun. Netw. 10(1), A77–A90 (2018).
    [Crossref]
  20. R. Lin, S. Luo, H. Wang, and S. Wang, “Energy-aware virtual network embedding in flexi-grid networks,” Opt. Express 25(24), 29699–29713 (2017).
    [Crossref] [PubMed]
  21. L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network flows,” Management Science 5(1), 97–101 (1958).
    [Crossref]
  22. G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research 8, 101–111 (1960).
    [Crossref]
  23. G. L. Nemhauser, “Column generation for linear and integer programming,” Documenta Mathematica-Extra Volume ISMP 5(1), 65–73 (2012).
  24. R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
    [Crossref]
  25. ILOG CPLEX, ILOG, Inc., Mountain View, CA[Online], Available: http://www.ilog.com/products/cplex/ .

2018 (2)

2017 (1)

2016 (2)

A. Cai, J. Guo, R. Lin, G. Shen, and M. Zukerman, “Multicast routing and distance-adaptive spectrum allocation in elastic optical networks with shared protection,” J. Lightwave Technol. 34(17), 4076–4088 (2016).
[Crossref]

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
[Crossref]

2015 (1)

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

2014 (1)

2013 (2)

S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
[Crossref]

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

2012 (1)

G. L. Nemhauser, “Column generation for linear and integer programming,” Documenta Mathematica-Extra Volume ISMP 5(1), 65–73 (2012).

2011 (1)

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

2010 (2)

N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Comput. Netw. 54(5), 862–876 (2010).
[Crossref]

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

1992 (1)

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun. 40(7), 1171–1182 (1992).
[Crossref]

1960 (1)

G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research 8, 101–111 (1960).
[Crossref]

1958 (1)

L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network flows,” Management Science 5(1), 97–101 (1958).
[Crossref]

Ait-Ouahmed, A.

Beck, M.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Botero, J.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Boutaba, R.

N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Comput. Netw. 54(5), 862–876 (2010).
[Crossref]

N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with coordinated node and link mapping,” in Proc. INFOCOM, 783–791 (2009).

Cai, A.

A. Cai, J. Guo, R. Lin, G. Shen, and M. Zukerman, “Multicast routing and distance-adaptive spectrum allocation in elastic optical networks with shared protection,” J. Lightwave Technol. 34(17), 4076–4088 (2016).
[Crossref]

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

Chen, J.

H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).

Cheng, X.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Chlamtac, I.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun. 40(7), 1171–1182 (1992).
[Crossref]

Chowdhury, N. M. K.

N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Comput. Netw. 54(5), 862–876 (2010).
[Crossref]

Chowdhury, N. M. M. K.

N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with coordinated node and link mapping,” in Proc. INFOCOM, 783–791 (2009).

Cui, H.

H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).

Dantzig, G. B.

G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research 8, 101–111 (1960).
[Crossref]

De Meer, H.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Ferrer Riera, J.

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

Figuerola, S.

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

Fiorani, M.

Fischer, A.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Ford, L. R.

L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network flows,” Management Science 5(1), 97–101 (1958).
[Crossref]

Fulkerson, D. R.

L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network flows,” Management Science 5(1), 97–101 (1958).
[Crossref]

Ganz, A.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun. 40(7), 1171–1182 (1992).
[Crossref]

Garcia-Espin, J. A.

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

Gong, L.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
[Crossref]

L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightwave Technol. 32(3), 450–460 (2014).
[Crossref]

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. Int. Conf. Commun., 3466–3470 (2013).

Guo, J.

Hesselbach, X.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Huang, X.

H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).

Jarray, A.

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

Jiang, H.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
[Crossref]

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Ju, M.

Karmi, G.

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun. 40(7), 1171–1182 (1992).
[Crossref]

Karmouch, A.

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Lin, R.

Liu, Y.

H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).

Luo, S.

R. Lin, S. Luo, H. Wang, and S. Wang, “Energy-aware virtual network embedding in flexi-grid networks,” Opt. Express 25(24), 29699–29713 (2017).
[Crossref] [PubMed]

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

Luo, Y.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Monti, P.

Mukherjee, B.

S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
[Crossref]

Nemhauser, G. L.

G. L. Nemhauser, “Column generation for linear and integer programming,” Documenta Mathematica-Extra Volume ISMP 5(1), 65–73 (2012).

Ohlen, P.

Pages, A.

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

Pearce, M.

J. Zhao and M. Pearce, “Virtual topology mapping in elastic optical networks,” in Proc. Int. Conf. Commun., 3904–3908 (2013).

Perello, J.

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

Rahman, M. R.

N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with coordinated node and link mapping,” in Proc. INFOCOM, 783–791 (2009).

Raza, M. R.

Rostami, A.

Shen, G.

Shi, L.

S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
[Crossref]

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Spadaro, S.

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

Su, S.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tanaka, T.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Tang, S.

H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Vadrevu, C.

S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
[Crossref]

Wang, H.

R. Lin, S. Luo, H. Wang, and S. Wang, “Energy-aware virtual network embedding in flexi-grid networks,” Opt. Express 25(24), 29699–29713 (2017).
[Crossref] [PubMed]

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Wang, J.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Wang, S.

R. Lin, S. Luo, H. Wang, and S. Wang, “Energy-aware virtual network embedding in flexi-grid networks,” Opt. Express 25(24), 29699–29713 (2017).
[Crossref] [PubMed]

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

Wang, Y.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
[Crossref]

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Wen, Y.

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. Int. Conf. Commun., 3466–3470 (2013).

Wolfe, P.

G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research 8, 101–111 (1960).
[Crossref]

Wosinska, L.

Yang, F.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Zhang, S.

S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
[Crossref]

Zhang, Z.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Zhao, J.

J. Zhao and M. Pearce, “Virtual topology mapping in elastic optical networks,” in Proc. Int. Conf. Commun., 3904–3908 (2013).

Zhao, W.

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. Int. Conf. Commun., 3466–3470 (2013).

Zhong, W. D.

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

Zhou, F.

Zhou, J.

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

Zhu, Z.

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
[Crossref]

L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightwave Technol. 32(3), 450–460 (2014).
[Crossref]

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. Int. Conf. Commun., 3466–3470 (2013).

Zukerman, M.

A. Cai, J. Guo, R. Lin, G. Shen, and M. Zukerman, “Multicast routing and distance-adaptive spectrum allocation in elastic optical networks with shared protection,” J. Lightwave Technol. 34(17), 4076–4088 (2016).
[Crossref]

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

Comput. Netw. (1)

N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Comput. Netw. 54(5), 862–876 (2010).
[Crossref]

Documenta Mathematica-Extra Volume ISMP (1)

G. L. Nemhauser, “Column generation for linear and integer programming,” Documenta Mathematica-Extra Volume ISMP 5(1), 65–73 (2012).

IEEE Commun. Mag. (2)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEEE Commun. Surv. Tutorials (1)

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

IEEE Trans. Commun. (1)

I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to high bandwidth optical WAN’s,” IEEE Trans. Commun. 40(7), 1171–1182 (1992).
[Crossref]

IEEE/ACM Trans. Netw. (2)

L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained virtual network embedding (LC-VNE) algorithms towards integrated node and link mapping,” IEEE/ACM Trans. Netw. 24(6), 3648–3661 (2016).
[Crossref]

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Management Science (1)

L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network flows,” Management Science 5(1), 97–101 (1958).
[Crossref]

Operations Research (1)

G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research 8, 101–111 (1960).
[Crossref]

Opt. Express (1)

Optical Switching and Networking (1)

S. Zhang, L. Shi, C. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid optical networks,” Optical Switching and Networking 10(4), 291–300 (2013).
[Crossref]

SIGCOMM Comput. Commun. Rev. (1)

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network embedding through topology-aware node ranking,” SIGCOMM Comput. Commun. Rev. 14(2), 39–47 (2011).

Other (8)

H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of virtual network embedding based on topology convergence-degree,” in Proc. Int. Conf. Commun., 246–250 (2013).

N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding with coordinated node and link mapping,” in Proc. INFOCOM, 783–791 (2009).

Cisco Inc., “Cisco visual networking index: forecast and methodology, 2016–2021” (2016).

J. Zhao and M. Pearce, “Virtual topology mapping in elastic optical networks,” in Proc. Int. Conf. Commun., 3904–3908 (2013).

A. Pages, J. Perello, S. Spadaro, J. A. Garcia-Espin, J. Ferrer Riera, and S. Figuerola, “Optimal allocation of virtual optical networks for the future Internet,” in Proc. Int. Conf. Opt. Netw. Des. Model., 1–6 (2012).

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. Int. Conf. Commun., 3466–3470 (2013).

R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W. D. Zhong, and M. Zukerman, “Virtual network embedding with adaptive modulation in flexi-grid networks,” J. Lightwave Technol., 1–13 (2017) (online access).
[Crossref]

ILOG CPLEX, ILOG, Inc., Mountain View, CA[Online], Available: http://www.ilog.com/products/cplex/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A VNE example.
Fig. 2
Fig. 2 Grid difference between WDM and flexi-grid.
Fig. 3
Fig. 3 An initial solution.
Fig. 4
Fig. 4 Auxiliary graphs with available spectrum slots from a to a + pij − 1.
Fig. 5
Fig. 5 Network topologies.
Fig. 6
Fig. 6 Exact PP and heuristic PP comparison.
Fig. 7
Fig. 7 Six-node network with variable network loads.
Fig. 8
Fig. 8 USnet network with variable network loads.

Tables (3)

Tables Icon

Algorithm 1: Exact algorithm

Tables Icon

Algorithm 2: Heuristic algorithm

Tables Icon

Table 1 Parameter settings

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

F ( i ) = t , i N v , t N s
G ( e ) = P F ( d ( e ) ) F ( s ( e ) ) , e L v
Min i j L v r R i j [ m n L s a F c m n p i j M m n , a i j , r + k N s c k ( p i A k i j , r Deg ( i ) + p j B k i j , r Deg ( j ) ) ] y r i j
r R i j y r i j = 1 , i j L v
t oadj ( i ) r R i t A k i t , r y r i t + t iadj ( i ) r R t i B k t i , r y r t i = Deg ( i ) r R i j A k i j , r y r i j , i j L v , k N s
t oadj ( j ) r R j t A k j t , r y r j t + t iadj ( j ) r R t j B k t j , r y r t j = Deg ( j ) r R i j B k i j , r y r i j , i j L v , k N s
i j L v r R i j ( A k i j , r Deg ( i ) + B k i j , r Deg ( j ) ) y r i j 1 , k N s
i j L v r R i j t = a p i j + 1 , a p i j + 2 , . . , a M m n , t i j , r y r i j U m n , a m n L s , a F
Min m n L s a F ( c m n p i j M m n , a + t = a p i j + 1 , a p i j + 2 , , a θ m n , a M m n , t ) + k N s ( c k p i + γ k D e g ( i ) + D e g ( i ) α i j , k t oadj ( i ) α i t , k t iadj ( i ) β t i , k ) A k + k N s ( c k p j + γ k D e g ( i ) + D e g ( i ) β i j , k t oadj ( i ) α j t , k t iadj ( j ) β t j , k ) B k π i j
a F m N s M m k , a a F n N s M k n , a = B k A k , k N s
k N s A k = 1
k N s B k = 1
A k + B k 1 , k N s
p i A k + p j B k U k , k N s
a F T a = 1
m n L s M m n , a T a a F
m n L s M m n , a ( | N s | 1 ) T a , a F
p i j M m n , a t = a , a + p i j 1 U m n , t , m n L s , a F
c m n = { c n p i + γ n D e g ( i ) + D e g ( i ) α i j , n t oadj ( i ) α i t , n t iadj ( i ) β t i , n m = i c m p j + γ m D e g ( j ) + D e g ( j ) β i j , m t oadj ( j ) α j t , m t iadj ( j ) β t j , m , n = j c m n p i j + t = a a + p i j 1 θ m n , t , m i , n j , a

Metrics