Abstract

A high-resolution fiber-optic ultrasonic sensor based on a suspended-core fiber was designed and experimentally demonstrated. The intrinsic Fabry–Perot interferometer consisting of a micro suspended-core from acid corrosion of a grapefruit fiber proved highly sensitive to a wide range of ultrasonic wave (UW) frequencies. A compact interrogation system using spectral sideband filtering was constructed for UW detection. The sensor exhibited significantly improved spatial resolution and detection sensitivity by etching the suspended-core diameter to few microns. Sensor fabrication involves only fiber splicing and corrosion, which provide a self-shielding cladding surrounding and protecting the core from collisions. This sensor is an excellent candidate for high-quality UW detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact fiber-optic ultrasonic sensor using an encapsulated micro-cantilever interferometer

Teng Guo, Peilong Li, Tianxi Zhang, and Xueguang Qiao
Appl. Opt. 58(13) 3331-3337 (2019)

Highly sensitive fiber-optic accelerometer using a micro suspended-core fiber

Wen Wang, Yedi Shen, Teng Guo, Xueguang Qiao, and Qiangzhou Rong
Appl. Opt. 58(21) 5852-5858 (2019)

Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor

Wenlu Zhang, Fengyi Chen, Wenwen Ma, Qiangzhou Rong, Xueguang Qiao, and Ruohui Wang
Opt. Express 26(8) 11025-11033 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express 20(2), 1237–1246 (2012).
    [Crossref] [PubMed]
  2. K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
    [Crossref] [PubMed]
  3. Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
    [Crossref]
  4. J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Express 22(16), 19573–19580 (2014).
    [Crossref] [PubMed]
  5. S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52(7), 880–889 (2012).
    [Crossref] [PubMed]
  6. H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
    [Crossref] [PubMed]
  7. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  8. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  9. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
    [Crossref] [PubMed]
  10. R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36(6), 981–983 (2011).
    [Crossref] [PubMed]
  11. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
    [Crossref] [PubMed]
  12. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
    [Crossref] [PubMed]
  13. J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
    [Crossref] [PubMed]
  14. A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
    [Crossref]
  15. B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
    [Crossref]
  16. L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
    [Crossref]
  17. P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
    [Crossref] [PubMed]
  18. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
    [Crossref]
  19. F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
    [Crossref] [PubMed]
  20. Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).
  21. J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
    [Crossref]
  22. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [Crossref] [PubMed]
  23. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
    [Crossref] [PubMed]
  24. F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
    [Crossref] [PubMed]
  25. Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
    [Crossref] [PubMed]
  26. W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
    [Crossref]
  27. M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006).
    [Crossref] [PubMed]
  28. S. C. Gong and C. Lee, “Analytical solutions of sensitivity for pressure microsensors,” IEEE Sens. J. 1(4), 340–344 (2001).
    [Crossref]
  29. W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
    [Crossref]
  30. Z. Li, L. Pei, B. Dong, C. Ma, and A. Wang, “Analysis of ultrasonic frequency response of surface attached fiber Bragg grating,” Appl. Opt. 51(20), 4709–4714 (2012).
    [Crossref] [PubMed]
  31. E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1330–1338 (2006).
    [Crossref] [PubMed]
  32. T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
    [Crossref] [PubMed]
  33. H. Su and X. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
    [Crossref]
  34. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  35. X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
    [Crossref] [PubMed]
  36. T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).
  37. J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
    [Crossref] [PubMed]

2017 (5)

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

2016 (2)

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

2015 (2)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

2012 (5)

2011 (2)

2010 (1)

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

2009 (1)

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

2008 (4)

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
[Crossref]

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

2007 (2)

H. Su and X. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

2006 (3)

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1330–1338 (2006).
[Crossref] [PubMed]

M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2005 (2)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[Crossref] [PubMed]

2001 (1)

S. C. Gong and C. Lee, “Analytical solutions of sensitivity for pressure microsensors,” IEEE Sens. J. 1(4), 340–344 (2001).
[Crossref]

2000 (1)

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[Crossref] [PubMed]

1997 (1)

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[Crossref]

1985 (1)

J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
[Crossref] [PubMed]

Bae, H.

Beard, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1330–1338 (2006).
[Crossref] [PubMed]

Beard, P. C.

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[Crossref] [PubMed]

Benjauthrit, V.

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Betz, D.

B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
[Crossref]

Bian, C.

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Borthwick, R.

J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
[Crossref] [PubMed]

Burgholzer, P.

R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36(6), 981–983 (2011).
[Crossref] [PubMed]

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Cash, K. J.

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

Chan, H. L. W.

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Chen, R.

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Chen, Y.

Choi, H. Y.

Clark, H. A.

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

Cooper, K. L.

Cox, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Culshaw, B.

B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
[Crossref]

Dong, B.

Dong, X.

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Eaton, W. P.

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[Crossref]

Fan, S.

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Fink, T.

Gang, T.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Gong, K.

Gong, S. C.

S. C. Gong and C. Lee, “Analytical solutions of sensitivity for pressure microsensors,” IEEE Sens. J. 1(4), 340–344 (2001).
[Crossref]

Gratt, S.

Grossauer, H.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

Gruen, H.

Guo, F.

Guo, J.

Guo, T.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Haltmeier, M.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Han, M.

Hao, Y.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

He, S.

S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52(7), 880–889 (2012).
[Crossref] [PubMed]

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Hinckley, S.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Ho, H.

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Hofer, C.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Holotta, M.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

Hsu, H. S.

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Hu, M.

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Huang, J.

Huang, X.

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

H. Su and X. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

Huang, Y.

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Hui, R.

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Hurrell, A. M.

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[Crossref] [PubMed]

Jathoul, A. P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Ji, X.

Jin, W.

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Johnson, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Kim, M. J.

Koester, L.

Kremser, C.

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

Lam, K. H.

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

Lau, S.

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Laufer, J.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Lee, B. H.

Lee, C.

S. C. Gong and C. Lee, “Analytical solutions of sensitivity for pressure microsensors,” IEEE Sens. J. 1(4), 340–344 (2001).
[Crossref]

Li, C.

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
[Crossref] [PubMed]

Li, H.

Li, J.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Li, M.

Li, X.

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

Li, Z.

Liang, L.

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Liu, F.

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

Liu, G.

Liu, N.

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Liu, X.

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Lythgoe, M. F.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Ma, C.

Ma, J.

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Ma, W.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Marafioti, T.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

McDicken, W. N.

J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
[Crossref] [PubMed]

Mills, T. N.

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[Crossref] [PubMed]

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Nicoll, J. J.

J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
[Crossref] [PubMed]

Nuster, R.

R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36(6), 981–983 (2011).
[Crossref] [PubMed]

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

Ogunlade, O.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Paltauf, G.

R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” Opt. Lett. 36(6), 981–983 (2011).
[Crossref] [PubMed]

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Park, S.

S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52(7), 880–889 (2012).
[Crossref] [PubMed]

Passler, K.

Pedley, R. B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Pei, L.

Philip, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Piggins, J. M.

J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
[Crossref] [PubMed]

Pizzey, A. R.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Pule, M. A.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Qiao, X.

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Reitinger, B.

Ren, W.

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

Ren, X.

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

Rong, Q.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Scherzer, O.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Shao, L.

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Shao, Z.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Shi, J.

Shung, K. K.

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Smith, J. H.

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[Crossref]

Sorazu, B.

B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
[Crossref]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Su, H.

H. Su and X. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

Sun, A.

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

Tam, H. Y.

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Tang, X.

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

Thursby, G.

B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
[Crossref]

Tong, R.

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Treeby, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Turner, J.

Wang, A.

Wang, L. V.

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Wang, M.

Wang, R.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Wang, R. K.

Wang, X.

Wang, Y.

Wild, G.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Xia, J.

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

Xu, F.

Xu, J.

Xuan, H.

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Xue, S.

Yan, X.

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

Yang, C.

Yang, D.

Yang, Y.

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yin, X.

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Yu, B.

Yu, M.

Zeng, L.

Zhang, A.

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

Zhang, E.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1330–1338 (2006).
[Crossref] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

Zhang, W.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

Zhang, Z.

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

Zhao, M.

Zhao, Q.

Zheng, F.

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Zhou, Q.

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Zhou, R.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

ACS Nano (1)

K. J. Cash, C. Li, J. Xia, L. V. Wang, and H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo,” ACS Nano 9(2), 1692–1698 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, and X. Qiao, “Ultrasonic imaging of seismic physical models using fiber Bragg grating Fabry-Perot probe,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600506 (2017).
[Crossref]

IEEE Photonics J. (1)

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Perot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 7103208 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Ma, H. Xuan, H. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

L. Shao, S. Lau, X. Dong, A. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photonics Technol. Lett. 20(8), 548–550 (2008).
[Crossref]

IEEE Sens. J. (4)

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

B. Culshaw, G. Thursby, D. Betz, and B. Sorazu, “The detection of ultrasound using fiber-optic sensors,” IEEE Sens. J. 8(7), 1360–1367 (2008).
[Crossref]

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic sensitivity-improved Fabry-Perot interferometer using acoustic focusing and its application for noncontact imaging,” IEEE Sens. J. 9(3), 6802511 (2017).

S. C. Gong and C. Lee, “Analytical solutions of sensitivity for pressure microsensors,” IEEE Sens. J. 1(4), 340–344 (2001).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (4)

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1330–1338 (2006).
[Crossref] [PubMed]

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[Crossref] [PubMed]

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

X. Yan, K. H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, and K. K. Shung, “Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1272–1276 (2013).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt. 15(2), 021307 (2010).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9(4), 239–246 (2015).
[Crossref]

Ophthalmology Vision Sci. (1)

T. Zhang, R. Chen, Z. Zhang, K. K. Shung, X. Tang, and Q. Zhou, “High frequency single crystal ultrasonic transducers for high resolution ophthalmic imaging applications,” Ophthalmology Vision Sci. 1(4), 135–141 (2017).

Opt. Express (5)

Opt. Lett. (5)

Sens. Actuators A Phys. (1)

H. S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, and K. K. Shung, “PMN-PT-PZT composite films for high frequency ultrasonic transducer applications,” Sens. Actuators A Phys. 179, 121–124 (2012).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

H. Su and X. Huang, “Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions,” Sens. Actuators B Chem. 126(2), 579–582 (2007).
[Crossref]

Sensors (Basel) (2)

T. Gang, M. Hu, Q. Rong, X. Qiao, L. Liang, N. Liu, R. Tong, X. Liu, and C. Bian, “High-frequency fiber-optic ultrasonic sensor using air mirco-bubble for imaging of seismic physical models,” Sensors (Basel) 16(12), 2125 (2016).
[Crossref] [PubMed]

Q. Rong, Y. Hao, R. Zhou, X. Yin, Z. Shao, L. Liang, and X. Qiao, “UW imaging of seismic-physical-models in air using fiber-optic Fabry-Perot interferometer,” Sensors (Basel) 17(2), 397 (2017).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struct. 6(5), 530–539 (1997).
[Crossref]

Ultrason. Imaging (1)

J. J. Nicoll, J. M. Piggins, W. N. McDicken, and R. Borthwick, “Improved mirror systems for high resolution ultrasonic imaging,” Ultrason. Imaging 7(2), 107–121 (1985).
[Crossref] [PubMed]

Ultrasonics (1)

S. Park and S. He, “Standing wave brass-PZT square tubular ultrasonic motor,” Ultrasonics 52(7), 880–889 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic diagram of the suspended-core sensor. (b) Cross-sectional image of the grapefruit PCF. (c) Microscope image of the fusion-spliced SMF-PCF. (d–i) Corrosion evolution of the SMF-PCF structure. (j–l) Microscope image of the probe illuminated by a He-Ne red laser: (j) SMF-PCF structure, (k) suspended-core sensor, (l) light intensity at the end face of the SMF-PCF, where white indicates high intensity, yellow indicates low intensity, and red indicates the lowest intensity.
Fig. 2
Fig. 2 SMF-PCF structure. (a) Interference spectra with different PCF lengths. (b) Theoretical and experimental results for FSR versus PCF length.
Fig. 3
Fig. 3 (a) Interference spectra evolution from the SMF-PCF to suspended-core sensor. (b) The corresponding spatial frequency spectra of the interference spectra.
Fig. 4
Fig. 4 Schematic diagram of the interaction between the suspended core and UW.
Fig. 5
Fig. 5 Results of numerical simulation of the natural frequency versus suspended-core length.
Fig. 6
Fig. 6 Schematic diagram of the UW detection system configuration.
Fig. 7
Fig. 7 Response to a 300 kHz sinusoidal UW. (a) Time-domain spectrum. (b) Frequency-domain spectrum.
Fig. 8
Fig. 8 Responses to a 300 kHz pulsed UW. (a) Comparison of the suspended-core sensor and a PZT receiver. (b) Pulse response sequence obtained by the sensor.
Fig. 9
Fig. 9 Time-domain response to 5 MHz (a) continuous UW and (b) pulsed UW.
Fig. 10
Fig. 10 Response to a 300 kHz sinusoidal UW. (a) The time-domain spectrum. (b) Zoom-in time-domain response extracted from the marked section of (a). (c) The fluctuation of output voltage.
Fig. 11
Fig. 11 (a) Signal voltage versus driving voltage at a fixed UW frequency. (b) Orientation-dependent response from −63.5° to 63.5°.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F S R = λ 1 λ 2 2 n e f f L ,
k = S E L = π D 2 E 4 L ,
f = 1 2 π k m = D 4 π π E m L = 1 2 π L E ρ ,
Δ P = S E Δ l L ,
Δ l = 4 L Δ P π D 2 E ,
I = I 1 + I 2 + 2 I 1 I 2 cos φ ,
λ = 4 n e f f L 2 j + 1 ,
Δ λ Δ P = 16 n e f f L ( 2 j + 1 ) π E D 2 ,
R = 0.61 λ N s c
N s c = n sin θ ,

Metrics