Abstract

A dynamical optical characterization of planar nematic liquid-crystal cells electrically driven through the Fréedericksz transition is presented. Our method involves applying voltage steps with different starting voltage close to the Fréedericksz threshold. Measurements are performed on cells with various thickness, from a few microns up to 180µm, and highlight the transient molecular disorder occurring close to the Fréedericksz transition. We show that the transient disorder affects the molecular arrangement mainly in the reorientational plane of the splay motion induced by the planar cell geometry. Moreover, a disorder quantification in terms of optical transmission losses and temporal dynamics enables us to picture the Fréedericksz transition. This characterization provides the identification of the electrical driving conditions for which the effect of the reorientational disorder is minimized. When comparing cells with various thicknesses, it results that thick cells are characterized by a much smoother transition with respect to the conventional step-like Fréedericksz transition of the thin cells, hence, thick cells can be dynamically driven over a large range of voltages, even below the Fréedericksz threshold. The results are discussed in view of novel electro-optical applications of thick layers of nematics. As an example, the experimental conditions for realizing a rapid birefringence scan and the achievement of a large and tunable group delay for femtosecond pulses are presented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light depolarization effects during the Fréedericksz transition in nematic liquid crystals

Carlo Vena, Carlo Versace, Giuseppe Strangi, Stefano D’Elia, and Roberto Bartolino
Opt. Express 15(25) 17063-17071 (2007)

Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles

G. Cook, V. Yu. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans
Opt. Express 18(16) 17339-17345 (2010)

Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields

Guan-Jhong Lin, Tien-Jung Chen, Yu-Ting Lin, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(12) 2468-2477 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004).
    [Crossref] [PubMed]
  2. C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39, 2511–2513 (2014).
  3. A. Jullien, R. Pascal, U. Bortolozzo, N. Forget, and S. Residori, ”High-resolution hyperspectral imaging with cascaded liquid crystal cells,” Optica 4, 400–405 (2017).
    [Crossref]
  4. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23, 28742–28754 (2015).
    [Crossref] [PubMed]
  5. I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
    [Crossref] [PubMed]
  6. A. Jullien, U. Bortolozzo, S. Grabielle, J.-P. Huignard, N. Forget, and S. Residori, “Continuously tunable femtosecond delay-line based on liquid crystal cells,” Opt. Express 24, 14483–14493 (2016).
    [Crossref] [PubMed]
  7. R. Laberdesque, A. Jullien, U. Bortolozzo, N. Forget, and S. Residori, “Tunable angular shearing interferometer based on wedged liquid crystal cells,” App. Opt. 56, 8656–8662 (2017).
    [Crossref]
  8. S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25, 12349–12356 (2017).
    [Crossref] [PubMed]
  9. C.-W. Chen, X. Guo, X. Ni, T.-H. Lin, and I. C. Khoo, “Slowing sub-picosecond laser pulses with 0.55mm-thick cholesteric liquid crystal,” Opt. Mater. Express 7, 2005–2011 (2017).
    [Crossref]
  10. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).
  11. V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919–930 (1927).
    [Crossref]
  12. G. I. Blake, T. Mullin, and S. J. Tavener, “The Freedericksz transition as a bifurcation problem,” Dynamics and Stability of Systems 14, 299–331 (1999).
    [Crossref]
  13. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals(Oxford Science Publications, 1993).
  14. E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003).
  15. H. Orihara, A. Sakai, and T. Nagaya, “Direct observation of the orientational fluctuations in a nematic liquid crystal with a high speed camera,” Mol. Cryst. Liq. Cryst. 366, 143 (2001).
    [Crossref]
  16. M. Nespoulous, C. Blanc, and M. Nobili, “Orientational quenched disorder of a nematic liquid crystal,” Phys. Rev. Lett. 48, 0978010 (1993).
  17. C. J. Gerritsma, C. Van Doorn, and P. Van Zanten, “Transient effects in electrically controlled light transmission of a twisted nematic layer,” Phys. Lett. A 48, 263–264 (1974).
    [Crossref]
  18. G. Napoli, “Weak anchoring effects in electrically driven Freedericksz transition,” J. Phys. A 39, 11–31 (2006).
    [Crossref]
  19. P. Manneville, “The transition to turbulence in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 70, 223–250 (1980).
  20. M.G. Clerc, S. Residori, and C.S. Riera, “First-Order Fréedericksz Transition in the Presence of a Light Driven Feedback,” Phys. Rev. E 63, 060701 (2001).
    [Crossref]
  21. P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
    [Crossref]
  22. C. Vena, C. Versace, G. Strangi, S. D. Elia, and R. Bartolino, “Light depolarization effects during the Freedericksz transition in nematic liquid crystals,” Opt. Express 15, 17063–17071 (2007).
    [Crossref] [PubMed]
  23. F. Moss and P. V. E. McClintock, Noise in Nonlinear Dynamical Systems, Volume 2 : Theory of Noise Induced Processes in Special Applications(Cambridge University, 1989).
  24. G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
    [Crossref]
  25. I.-C. Khoo, Liquid crystals, Physical Properties and Nonlinear Optical Phenomena(Wiley, 1995).
  26. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [Crossref]
  27. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
    [Crossref]

2017 (4)

2016 (2)

I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
[Crossref] [PubMed]

A. Jullien, U. Bortolozzo, S. Grabielle, J.-P. Huignard, N. Forget, and S. Residori, “Continuously tunable femtosecond delay-line based on liquid crystal cells,” Opt. Express 24, 14483–14493 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
[Crossref]

2007 (1)

2006 (1)

G. Napoli, “Weak anchoring effects in electrically driven Freedericksz transition,” J. Phys. A 39, 11–31 (2006).
[Crossref]

2005 (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

2004 (1)

2003 (1)

E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003).

2002 (1)

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

2001 (2)

M.G. Clerc, S. Residori, and C.S. Riera, “First-Order Fréedericksz Transition in the Presence of a Light Driven Feedback,” Phys. Rev. E 63, 060701 (2001).
[Crossref]

H. Orihara, A. Sakai, and T. Nagaya, “Direct observation of the orientational fluctuations in a nematic liquid crystal with a high speed camera,” Mol. Cryst. Liq. Cryst. 366, 143 (2001).
[Crossref]

1999 (1)

G. I. Blake, T. Mullin, and S. J. Tavener, “The Freedericksz transition as a bifurcation problem,” Dynamics and Stability of Systems 14, 299–331 (1999).
[Crossref]

1995 (1)

1993 (1)

M. Nespoulous, C. Blanc, and M. Nobili, “Orientational quenched disorder of a nematic liquid crystal,” Phys. Rev. Lett. 48, 0978010 (1993).

1980 (1)

P. Manneville, “The transition to turbulence in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 70, 223–250 (1980).

1974 (1)

C. J. Gerritsma, C. Van Doorn, and P. Van Zanten, “Transient effects in electrically controlled light transmission of a twisted nematic layer,” Phys. Lett. A 48, 263–264 (1974).
[Crossref]

1927 (1)

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919–930 (1927).
[Crossref]

AbuLeil, M.

I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
[Crossref] [PubMed]

Agez, G.

G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
[Crossref]

August, I.

I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
[Crossref] [PubMed]

Bartolino, R.

Bedrov, D.

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

Blake, G. I.

G. I. Blake, T. Mullin, and S. J. Tavener, “The Freedericksz transition as a bifurcation problem,” Dynamics and Stability of Systems 14, 299–331 (1999).
[Crossref]

Blanc, C.

M. Nespoulous, C. Blanc, and M. Nobili, “Orientational quenched disorder of a nematic liquid crystal,” Phys. Rev. Lett. 48, 0978010 (1993).

Bortolozzo, U.

Brown, C. V.

E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003).

Chen, C.-W.

Chen, C.-Y.

Chen, P.

Chen, P.-H.

Chériaux, G.

Clerc, M. G.

G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
[Crossref]

Clerc, M.G.

M.G. Clerc, S. Residori, and C.S. Riera, “First-Order Fréedericksz Transition in the Presence of a Light Driven Feedback,” Phys. Rev. E 63, 060701 (2001).
[Crossref]

Elia, S. D.

Forget, N.

Freedericksz, V.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919–930 (1927).
[Crossref]

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

Ge, S.

Gennes, P. G. De

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals(Oxford Science Publications, 1993).

Gerritsma, C. J.

C. J. Gerritsma, C. Van Doorn, and P. Van Zanten, “Transient effects in electrically controlled light transmission of a twisted nematic layer,” Phys. Lett. A 48, 263–264 (1974).
[Crossref]

Glaser, M.

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

Grabielle, S.

Guo, X.

Hegyi, A.

Hsieh, C.-F.

Hu, W.

Huignard, J.-P.

Joffre, M.

Jullien, A.

Khoo, I. C.

Khoo, I.-C.

I.-C. Khoo, Liquid crystals, Physical Properties and Nonlinear Optical Phenomena(Wiley, 1995).

Laberdesque, R.

R. Laberdesque, A. Jullien, U. Bortolozzo, N. Forget, and S. Residori, “Tunable angular shearing interferometer based on wedged liquid crystal cells,” App. Opt. 56, 8656–8662 (2017).
[Crossref]

Lepetit, L.

Li, J.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

Lin, T.-H.

Lin, Y.-F.

Louvergneaux, E.

G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
[Crossref]

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

Lu, Y.

Maclennan, J. E.

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

Manneville, P.

P. Manneville, “The transition to turbulence in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 70, 223–250 (1980).

Martini, J.

McClintock, P. V. E.

F. Moss and P. V. E. McClintock, Noise in Nonlinear Dynamical Systems, Volume 2 : Theory of Noise Induced Processes in Special Applications(Cambridge University, 1989).

Moss, F.

F. Moss and P. V. E. McClintock, Noise in Nonlinear Dynamical Systems, Volume 2 : Theory of Noise Induced Processes in Special Applications(Cambridge University, 1989).

Mullin, T.

G. I. Blake, T. Mullin, and S. J. Tavener, “The Freedericksz transition as a bifurcation problem,” Dynamics and Stability of Systems 14, 299–331 (1999).
[Crossref]

Nagaya, T.

H. Orihara, A. Sakai, and T. Nagaya, “Direct observation of the orientational fluctuations in a nematic liquid crystal with a high speed camera,” Mol. Cryst. Liq. Cryst. 366, 143 (2001).
[Crossref]

Napoli, G.

G. Napoli, “Weak anchoring effects in electrically driven Freedericksz transition,” J. Phys. A 39, 11–31 (2006).
[Crossref]

Nespoulous, M.

M. Nespoulous, C. Blanc, and M. Nobili, “Orientational quenched disorder of a nematic liquid crystal,” Phys. Rev. Lett. 48, 0978010 (1993).

Ni, X.

Nobili, M.

M. Nespoulous, C. Blanc, and M. Nobili, “Orientational quenched disorder of a nematic liquid crystal,” Phys. Rev. Lett. 48, 0978010 (1993).

Oiknine, Y.

I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
[Crossref] [PubMed]

Orihara, H.

H. Orihara, A. Sakai, and T. Nagaya, “Direct observation of the orientational fluctuations in a nematic liquid crystal with a high speed camera,” Mol. Cryst. Liq. Cryst. 366, 143 (2001).
[Crossref]

Pan, C.-L.

Pan, R.-P.

Pascal, R.

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals(Oxford Science Publications, 1993).

Raynes, E. P.

E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003).

Residori, S.

R. Laberdesque, A. Jullien, U. Bortolozzo, N. Forget, and S. Residori, “Tunable angular shearing interferometer based on wedged liquid crystal cells,” App. Opt. 56, 8656–8662 (2017).
[Crossref]

A. Jullien, R. Pascal, U. Bortolozzo, N. Forget, and S. Residori, ”High-resolution hyperspectral imaging with cascaded liquid crystal cells,” Optica 4, 400–405 (2017).
[Crossref]

A. Jullien, U. Bortolozzo, S. Grabielle, J.-P. Huignard, N. Forget, and S. Residori, “Continuously tunable femtosecond delay-line based on liquid crystal cells,” Opt. Express 24, 14483–14493 (2016).
[Crossref] [PubMed]

M.G. Clerc, S. Residori, and C.S. Riera, “First-Order Fréedericksz Transition in the Presence of a Light Driven Feedback,” Phys. Rev. E 63, 060701 (2001).
[Crossref]

Riera, C.S.

M.G. Clerc, S. Residori, and C.S. Riera, “First-Order Fréedericksz Transition in the Presence of a Light Driven Feedback,” Phys. Rev. E 63, 060701 (2001).
[Crossref]

Rojas, R. G.

G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
[Crossref]

Sakai, A.

H. Orihara, A. Sakai, and T. Nagaya, “Direct observation of the orientational fluctuations in a nematic liquid crystal with a high speed camera,” Mol. Cryst. Liq. Cryst. 366, 143 (2001).
[Crossref]

Shen, Z.

Smith, G. D.

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

Stern, A.

I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
[Crossref] [PubMed]

Strangi, G.

Stromer, J. F.

E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003).

Sun, W.

Tang, T.-T.

Tavener, S. J.

G. I. Blake, T. Mullin, and S. J. Tavener, “The Freedericksz transition as a bifurcation problem,” Dynamics and Stability of Systems 14, 299–331 (1999).
[Crossref]

Tian, P.

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

Van Doorn, C.

C. J. Gerritsma, C. Van Doorn, and P. Van Zanten, “Transient effects in electrically controlled light transmission of a twisted nematic layer,” Phys. Lett. A 48, 263–264 (1974).
[Crossref]

Van Zanten, P.

C. J. Gerritsma, C. Van Doorn, and P. Van Zanten, “Transient effects in electrically controlled light transmission of a twisted nematic layer,” Phys. Lett. A 48, 263–264 (1974).
[Crossref]

Vena, C.

Versace, C.

Wang, X.

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).

Yang, C.-S.

Yang, D.-K.

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).

Yu, P.

Zhang, Y.

Zolina, V.

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919–930 (1927).
[Crossref]

App. Opt. (1)

R. Laberdesque, A. Jullien, U. Bortolozzo, N. Forget, and S. Residori, “Tunable angular shearing interferometer based on wedged liquid crystal cells,” App. Opt. 56, 8656–8662 (2017).
[Crossref]

Appl. Phys. Lett. (1)

E. P. Raynes, C. V. Brown, and J. F. Stromer, “Method for the measurement of the K22 nematic elastic constant,” Appl. Phys. Lett. 82, 13–15 (2003).

Dynamics and Stability of Systems (1)

G. I. Blake, T. Mullin, and S. J. Tavener, “The Freedericksz transition as a bifurcation problem,” Dynamics and Stability of Systems 14, 299–331 (1999).
[Crossref]

J. Ch. Phy. (1)

P. Tian, D. Bedrov, G. D. Smith, M. Glaser, and J. E. Maclennan, “A molecular-dynamics simulation study of the switching dynamics of a nematic liquid crystal under an applied electrical field,” J. Ch. Phy. 117, 9452–9459 (2002).
[Crossref]

J. Display Techn. (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Techn. 1, 51–61 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

G. Napoli, “Weak anchoring effects in electrically driven Freedericksz transition,” J. Phys. A 39, 11–31 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

P. Manneville, “The transition to turbulence in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 70, 223–250 (1980).

H. Orihara, A. Sakai, and T. Nagaya, “Direct observation of the orientational fluctuations in a nematic liquid crystal with a high speed camera,” Mol. Cryst. Liq. Cryst. 366, 143 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Phys. Lett. A (1)

C. J. Gerritsma, C. Van Doorn, and P. Van Zanten, “Transient effects in electrically controlled light transmission of a twisted nematic layer,” Phys. Lett. A 48, 263–264 (1974).
[Crossref]

Phys. Rev. E (1)

M.G. Clerc, S. Residori, and C.S. Riera, “First-Order Fréedericksz Transition in the Presence of a Light Driven Feedback,” Phys. Rev. E 63, 060701 (2001).
[Crossref]

Phys. Rev. E. (1)

G. Agez, M. G. Clerc, E. Louvergneaux, and R. G. Rojas, “Bifurcations of emerging patterns in the presence of additive noise,” Phys. Rev. E. 87, 04291901 (2013)
[Crossref]

Phys. Rev. Lett. (1)

M. Nespoulous, C. Blanc, and M. Nobili, “Orientational quenched disorder of a nematic liquid crystal,” Phys. Rev. Lett. 48, 0978010 (1993).

Sci. Rep. (1)

I. August, Y. Oiknine, M. AbuLeil, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6, 23524 (2016).
[Crossref] [PubMed]

Trans. Faraday Soc. (1)

V. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919–930 (1927).
[Crossref]

Other (4)

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals(Oxford Science Publications, 1993).

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices(John Wiley & Sons, 2006).

I.-C. Khoo, Liquid crystals, Physical Properties and Nonlinear Optical Phenomena(Wiley, 1995).

F. Moss and P. V. E. McClintock, Noise in Nonlinear Dynamical Systems, Volume 2 : Theory of Noise Induced Processes in Special Applications(Cambridge University, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for (a) the dynamical characterization of the FT and (b) the rapid birefringence scan. (a) A 10mW light beam from a Helium-Neon laser (λ = 633 nm) is sent onto the LC-cell after a half-wave plate and a polarizer that orientate its polarization direction at 45 with respect to the initial nematic director n . The cube beam-splitter separates the two components of polarization at the output of the cell, each component is, then, sent to a photodiode. The photodiodes and the voltage generator are connected to the oscilloscope to acquire the polarization signals and a copy of the applied voltage. (b) A femtosecond laser (30 fs, repetition rate 80 MHz, spectrum centered at 770 nm) produces a 30mW beam. A half-wave plate and a polarizer orientate the input polarization at 45 with respect to the initial director of the LC-cell (L=180 µm fixed) to generate two cross-polarized sub-pulses delayed by Δ τ g = Δ n g L c after the propagation in the LC. A polarizer placed at the output of the cell projects the two polarization components onto the same polarization direction in order to generate a spectral interference pattern. A spectrometer acquires the dynamical spectral map. In (c) is shown the voltage step applied to the LC-cells. V0 varies from 0V to 2V, while the final voltage is fixed at 10V.
Fig. 2
Fig. 2 a) Transmitted signals along the extraordinary (A, blue and red) and ordinary (B, light blue and orange) axis, acquired for a voltage step V0 = 0V − 10V and a voltage step V0 = 1.3V − 10V (L=14 µm). An artificial offset (0.5V ) is added between the two sets of data for a better visibility. b) Transmitted signal from photodiode A (extraordinary axis) for the same cell (L=14 µm) and for different starting voltages V0. All the measurements start from the same t0 (not indicated in the plot for the sake of better visibility).
Fig. 3
Fig. 3 a) Transmitted signal along the extraordinary axis (photodiode A) acquired during the cell switch-on for the same voltage step (0V − 10V) and for different LC thickness. Data are normalized and presented with an arbitrary temporal offset in order to compare the maximum losses (lowest value of the transmission dip). b) Transient transmission (see definition in the text) measured along the extraordinary axis during the cell switch-on for an applied voltage step V0-10V by changing the starting voltage V0 and for different cell thicknesses. The area beyond Vth (1.2V ) is highlighted in blue.
Fig. 4
Fig. 4 Transient transmission (color-coded) as function of L and V0, extrapolated from our experimental data. The dotted white line features T = 50%.
Fig. 5
Fig. 5 Transmitted signal along the extraordinary axis from a L=9µm cell at V0 = 0V (blue line). Grey line represents the electric field applied. τmin and τprec are indicated.
Fig. 6
Fig. 6 Temporal dynamical features of the Fréedericksz transition. τmin evolution as a function of V0 and thickness (a, b), τprec as a function of V0 and thickness (c, d). The area beyond the Vth (1.2V) is highlighted in blue (a,c) and the red line (b,d) indicates a quadratic fit of the data.
Fig. 7
Fig. 7 Dynamical spectral maps obtained by using the experimental setup shown in Fig. 1(b); data are acquired at t = t0 for different V0-10V voltage steps V0=(0V-1V-1.3V-1.5V).
Fig. 8
Fig. 8 a) Δ n g and Δ τ g plotted as a function of acquisition time for different V0 (0V, 1V, 1.3V, 1.5V ); the blue area is associated to the V0 = 0 measurement and indicates that for this voltage step the Fourier Transform is not possible in this time interval. b) Comparison between Δ n g normalized and the transient transmission T as a function of V0 (the curve is extrapolated from the experimental data). In gray the condition of T = 50%

Metrics