Abstract

Ultrashort light pulse transport and amplification in a 1.3 m long step-index multimode fiber with gain and with weak coupling has been investigated. An adaptive shaping of the input wavefront, only based on the output intensity pattern, has led to an amplified pulse focused both in space (1/32) and in time (1/10) despite a strong modal group delay dispersion. Optimization of the input owing to the two-photon detection of the amplified signal permitted to excite the fastest and more intense principal mode of the fiber and to get an output pulse duration limited by group velocity dispersion.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Delivery of focused short pulses through a multimode fiber

Edgar E. Morales-Delgado, Salma Farahi, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 23(7) 9109-9120 (2015)

Space–time focusing in a highly multimode fiber via optical pulse shaping

Bohao Liu and Andrew M. Weiner
Opt. Lett. 43(19) 4675-4678 (2018)

Adaptive control of femtosecond pulse propagation in optical fibers

Fiorenzo G. Omenetto, Antoinette J. Taylor, Mark D. Moores, and David H. Reitze
Opt. Lett. 26(12) 938-940 (2001)

References

  • View by:
  • |
  • |
  • |

  1. T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense Space-Division Multiplexed Transmission Systems Using Multi-Core and Multi-Mode Fiber,” J. Lightwave Technol. 34(2), 582–592 (2016).
    [Crossref]
  2. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  3. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref] [PubMed]
  4. B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1(3), 175–180 (2014).
    [Crossref]
  5. H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
    [Crossref] [PubMed]
  6. S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
    [Crossref]
  7. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  8. J. Carpenter, B. J. Eggleton, and J. Schröder, “110x110 optical mode transfer matrix inversion,” Opt. Express 22(1), 96–101 (2014).
    [Crossref] [PubMed]
  9. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  10. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  11. H. Frostig, E. Small, A. Daniel, P. Oulevey, S. Derevyanko, and Y. Silberberg, “Focusing light by wavefront shaping through disorder and nonlinearity,” Optica 4(9), 1073–1079 (2017).
    [Crossref]
  12. R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
    [Crossref]
  13. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  14. Z. Guang, M. Rhodes, and R. Trebino, “Measuring spatiotemporal ultrafast field structures of pulses from multimode optical fibers,” Appl. Opt. 56(12), 3319–3324 (2017).
    [Crossref] [PubMed]
  15. J. Carpenter, B. J. Eggleton, and J. Schröder, “Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber,” Opt. Lett. 41(23), 5580–5583 (2016).
    [Crossref] [PubMed]
  16. J. Carpenter, B. J. Eggleton, and J. Schroder, “Observation of Eisenbud-Wigner-Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
    [Crossref]
  17. W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
    [Crossref] [PubMed]
  18. S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning light through flexible multimode fibers without access to the distal end,” https://arxiv.org/abs/1506.08586 .
  19. O. Tzang, A. M. Caravaca-Aguirre, K. Wagner, and R. Piestun, “Wave-front shaping in nonlinear multimode fibers,” https://arxiv.org/abs/1701.05260 .
  20. B. Blochet, L. Bourdieu, and S. Gigan, “Fast wavefront optimization for focusing through biological tissue”, Proc. SPIE 10073, 100730T (2017).
  21. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  22. S. Fan and J. M. Kahn, “Principal modes in multimode waveguides,” Opt. Lett. 30(2), 135–137 (2005).
    [Crossref] [PubMed]
  23. W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
    [Crossref] [PubMed]

2017 (5)

2016 (5)

J. Carpenter, B. J. Eggleton, and J. Schröder, “Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber,” Opt. Lett. 41(23), 5580–5583 (2016).
[Crossref] [PubMed]

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
[Crossref] [PubMed]

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

T. Mizuno, H. Takara, A. Sano, and Y. Miyamoto, “Dense Space-Division Multiplexed Transmission Systems Using Multi-Core and Multi-Mode Fiber,” J. Lightwave Technol. 34(2), 582–592 (2016).
[Crossref]

2015 (4)

2014 (2)

2012 (2)

2011 (1)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

2007 (1)

2005 (1)

Alam, M.

Ambichl, P.

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
[Crossref] [PubMed]

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
[Crossref] [PubMed]

Barbieri, M.

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

Barthélémy, A.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Benoist, J.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Blochet, B.

B. Blochet, L. Bourdieu, and S. Gigan, “Fast wavefront optimization for focusing through biological tissue”, Proc. SPIE 10073, 100730T (2017).

Bourdieu, L.

B. Blochet, L. Bourdieu, and S. Gigan, “Fast wavefront optimization for focusing through biological tissue”, Proc. SPIE 10073, 100730T (2017).

Bromberg, Y.

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
[Crossref] [PubMed]

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
[Crossref] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Cao, H.

Carpenter, J.

Cižmár, T.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Daniel, A.

Defienne, H.

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

Derevyanko, S.

Desfarges-berthelemot, A.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Eggleton, B. J.

Fan, S.

Farahi, S.

Florentin, R.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Frostig, H.

Gigan, S.

B. Blochet, L. Bourdieu, and S. Gigan, “Fast wavefront optimization for focusing through biological tissue”, Proc. SPIE 10073, 100730T (2017).

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

Goy, A.

Guang, Z.

Huignard, J.-P.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Kahn, J. M.

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Kermene, V.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Loterie, D.

Miyamoto, Y.

Mizuno, T.

Morales-Delgado, E. E.

Moser, C.

Mosk, A. P.

Oulevey, P.

Pagnoux, D.

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Papadopoulos, I.

Papadopoulos, I. N.

Psaltis, D.

Redding, B.

Rhodes, M.

Rotter, S.

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
[Crossref] [PubMed]

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
[Crossref] [PubMed]

Sano, A.

Schroder, J.

J. Carpenter, B. J. Eggleton, and J. Schroder, “Observation of Eisenbud-Wigner-Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

Schröder, J.

Seifert, M.

Silberberg, Y.

H. Frostig, E. Small, A. Daniel, P. Oulevey, S. Derevyanko, and Y. Silberberg, “Focusing light by wavefront shaping through disorder and nonlinearity,” Optica 4(9), 1073–1079 (2017).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Small, E.

H. Frostig, E. Small, A. Daniel, P. Oulevey, S. Derevyanko, and Y. Silberberg, “Focusing light by wavefront shaping through disorder and nonlinearity,” Optica 4(9), 1073–1079 (2017).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Smith, B. J.

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

Takara, H.

Trebino, R.

Vellekoop, I. M.

Walmsley, I. A.

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

Xiong, W.

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
[Crossref] [PubMed]

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

R. Florentin, V. Kermene, J. Benoist, A. Desfarges-berthelemot, D. Pagnoux, A. Barthélémy, and J.-P. Huignard, “Shaping the light amplified in a multimode fiber,” Light Sci. Appl. 6(2), e16208 (2016).
[Crossref]

Nat. Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Carpenter, B. J. Eggleton, and J. Schroder, “Observation of Eisenbud-Wigner-Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Optica (2)

Phys. Rev. Lett. (1)

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling,” Phys. Rev. Lett. 117(5), 053901 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Blochet, L. Bourdieu, and S. Gigan, “Fast wavefront optimization for focusing through biological tissue”, Proc. SPIE 10073, 100730T (2017).

Rev. Mod. Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

Sci. Adv. (1)

H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S. Gigan, “Two-photon quantum walk in a multimode fiber,” Sci. Adv. 2(1), e1501054 (2016).
[Crossref] [PubMed]

Other (2)

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning light through flexible multimode fibers without access to the distal end,” https://arxiv.org/abs/1506.08586 .

O. Tzang, A. M. Caravaca-Aguirre, K. Wagner, and R. Piestun, “Wave-front shaping in nonlinear multimode fibers,” https://arxiv.org/abs/1701.05260 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental set-up designed for space time shaping at the output of the Ytterbium doped multimode fiber amplifier (fiber section in inset).
Fig. 2
Fig. 2 Group delay of LPmn modes of the MMF.
Fig. 3
Fig. 3 Typical autocorrelation trace (a) of the pulse obtained with a random input wavefront and intensity distribution (b) at the output of the MMF. The white circle shows core-clad limit.
Fig. 4
Fig. 4 Output patterns (a) and (c) and corresponding autocorrelation traces (b) and (d) recorded after wavefront shaping. For figures (a) and (b) (resp. (c) and (d)), optimization of the input phase shape was made with a 5 µm (resp. 20 µm) diameter focus target. In Fig. (c), small black dashed circle denotes the target limit.
Fig. 5
Fig. 5 Output pattern (a) and corresponding autocorrelation traces (b) recorded after wavefront shaping. Optimization was performed with a 20 µm diameter focus target located on the black dashed circle
Fig. 6
Fig. 6 (a) Transmission matrix of a MMF amplifier with linear gain and weak coupling used in the simulation, (b) principal mode with the smallest group time delay (PM#1), (c) principal mode with an intermediate delay (PM#33), and (d) slowest principal mode (PM#104). Corresponding pulse profiles in lower insets.
Fig. 7
Fig. 7 Plot of the computed TPA-PD signal owing to the principal mode launched in the MMF amplifier. Insets show some time integrated output patterns for a 240 fs input pulse with transverse shape corresponding to the quickest, intermediate and slowest PMs.
Fig. 8
Fig. 8 Near field intensity of the MMF output with gain after optimization of the TPA-PD signal, on the left. The experimental figure is close to that of the expected PM. Corresponding autocorrelation traces of the amplified pulses (red circles: measurements, and black line: theoretical PM trace) on the right.

Metrics