Abstract

We investigated the dependence of the dispersion of retardation on the UV-polymerization temperature and the molecular orientation in a self-organized smectic host-guest reactive mesogen (RM) compound. The positive dispersion of retardation was converted to the negative dispersion of retardation with decreasing the UV-polymerization temperature. From the Fourier-transform infrared (FT-IR) dichroism measurement, it was found that more fractions of the guest molecules were aligned parallel to the smectic layer plane with decreasing the UV-polymerization temperature. The guest molecules located in the inter-layer space absorb a longer wavelength of UV light compared to the host and induce the negative dispersion of retardation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single layer retarder with negative dispersion of birefringence and wide field-of-view

Jiyong Hwang, Seungbin Yang, Yu-Jin Choi, Yumin Lee, Kwang-Un Jeong, and Ji-Hoon Lee
Opt. Express 24(17) 19934-19939 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, 1999) pp.242–247.
  2. A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
    [Crossref]
  3. A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
    [Crossref]
  4. T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
    [Crossref] [PubMed]
  5. O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
    [Crossref]
  6. I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
    [Crossref]
  7. H. Lee and J.-H. Lee, “Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film,” Opt. Lett. 39(17), 5146–5149 (2014).
    [Crossref] [PubMed]
  8. H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with a negative dispersion of birefringence,” Curr. Appl. Phys. 15(4), 456–460 (2015).
    [Crossref]
  9. J. Hwang, S. Yang, Y.-J. Choi, Y. Lee, K.-U. Jeong, and J.-H. Lee, “Single layer retarder with negative dispersion of birefringence and wide field-of-view,” Opt. Express 24(17), 19934–19939 (2016).
    [Crossref] [PubMed]
  10. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130–136 (1955).
  11. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10(4), 973–975 (1971).
    [Crossref] [PubMed]
  12. T.-H. Yoon, G.-D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25(20), 1547–1549 (2000).
    [Crossref] [PubMed]
  13. A. Geivandov, A. Lazarev, A. Manko, and S. Palto, “Advanced wideband coatable LCD retarder with anomalous dispersion of optical anisotropy”, Proceedings of The 15th International Display Workshops 739–742 (2008).
  14. A. Geivandov, A. Lazarev, P. Lazarev, and S. Palto, “Negative dispersion retarder for 3D TV applications,” International Display Workshop. 265–267 (2010).
  15. Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Int. Symp. Digest 381–384 (2014).
    [Crossref]
  16. K. Osato and T. Kobayashi, “Novel 1/4-wave plate film for OLED panels,” SID Int. Symp. Digest 1687–1690 (2015).
  17. S. Yang, H. Lee, and J.-H. Lee, “Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film,” Opt. Eng. 55(2), 027106 (2016).
    [Crossref]
  18. M. A. Glaser and N. A. Clark, “Fluctuations and clinicity in tilted smectic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 021711 (2002).
    [Crossref] [PubMed]
  19. J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an nitrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
    [Crossref]
  20. J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
    [Crossref]
  21. J.-H. Lee and T.-H. Yoon, “Effects of phase-sepration direction of monomers on polymer wall formation and electrooptical properties of flexible smectic liquid crystal cell,” Jpn. J. Appl. Phys. 50(6R), 060203 (2011).
    [Crossref]

2017 (1)

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

2016 (2)

J. Hwang, S. Yang, Y.-J. Choi, Y. Lee, K.-U. Jeong, and J.-H. Lee, “Single layer retarder with negative dispersion of birefringence and wide field-of-view,” Opt. Express 24(17), 19934–19939 (2016).
[Crossref] [PubMed]

S. Yang, H. Lee, and J.-H. Lee, “Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film,” Opt. Eng. 55(2), 027106 (2016).
[Crossref]

2015 (1)

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with a negative dispersion of birefringence,” Curr. Appl. Phys. 15(4), 456–460 (2015).
[Crossref]

2014 (1)

2012 (1)

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

2011 (2)

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

J.-H. Lee and T.-H. Yoon, “Effects of phase-sepration direction of monomers on polymer wall formation and electrooptical properties of flexible smectic liquid crystal cell,” Jpn. J. Appl. Phys. 50(6R), 060203 (2011).
[Crossref]

2010 (1)

I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
[Crossref]

2006 (1)

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

2005 (1)

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an nitrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

2003 (1)

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

2002 (1)

M. A. Glaser and N. A. Clark, “Fluctuations and clinicity in tilted smectic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 021711 (2002).
[Crossref] [PubMed]

2000 (1)

1971 (1)

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130–136 (1955).

Beckers, J. M.

Choi, Y.-J.

Clark, N. A.

M. A. Glaser and N. A. Clark, “Fluctuations and clinicity in tilted smectic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 021711 (2002).
[Crossref] [PubMed]

Danjo, T.

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Enomoto, Y.

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Gardiner, I.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Geivandov, A.

I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
[Crossref]

A. Geivandov, A. Lazarev, A. Manko, and S. Palto, “Advanced wideband coatable LCD retarder with anomalous dispersion of optical anisotropy”, Proceedings of The 15th International Display Workshops 739–742 (2008).

A. Geivandov, A. Lazarev, P. Lazarev, and S. Palto, “Negative dispersion retarder for 3D TV applications,” International Display Workshop. 265–267 (2010).

Glaser, M. A.

M. A. Glaser and N. A. Clark, “Fluctuations and clinicity in tilted smectic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 021711 (2002).
[Crossref] [PubMed]

Harding, R.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Hwang, J.

Ikeda, Y.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Iwata, T.

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Jeong, K.-U.

Jin, J.-I.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

Kasianova, I.

I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
[Crossref]

Kharatiyan, E.

I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
[Crossref]

Kim, J. C.

Kwon, S.-B.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

Kwon, Y.-W.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

Lazarev, A.

A. Geivandov, A. Lazarev, A. Manko, and S. Palto, “Advanced wideband coatable LCD retarder with anomalous dispersion of optical anisotropy”, Proceedings of The 15th International Display Workshops 739–742 (2008).

A. Geivandov, A. Lazarev, P. Lazarev, and S. Palto, “Negative dispersion retarder for 3D TV applications,” International Display Workshop. 265–267 (2010).

Lazarev, P.

A. Geivandov, A. Lazarev, P. Lazarev, and S. Palto, “Negative dispersion retarder for 3D TV applications,” International Display Workshop. 265–267 (2010).

Lee, G.-D.

Lee, H.

S. Yang, H. Lee, and J.-H. Lee, “Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film,” Opt. Eng. 55(2), 027106 (2016).
[Crossref]

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with a negative dispersion of birefringence,” Curr. Appl. Phys. 15(4), 456–460 (2015).
[Crossref]

H. Lee and J.-H. Lee, “Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film,” Opt. Lett. 39(17), 5146–5149 (2014).
[Crossref] [PubMed]

Lee, J.-H.

J. Hwang, S. Yang, Y.-J. Choi, Y. Lee, K.-U. Jeong, and J.-H. Lee, “Single layer retarder with negative dispersion of birefringence and wide field-of-view,” Opt. Express 24(17), 19934–19939 (2016).
[Crossref] [PubMed]

S. Yang, H. Lee, and J.-H. Lee, “Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film,” Opt. Eng. 55(2), 027106 (2016).
[Crossref]

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with a negative dispersion of birefringence,” Curr. Appl. Phys. 15(4), 456–460 (2015).
[Crossref]

H. Lee and J.-H. Lee, “Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film,” Opt. Lett. 39(17), 5146–5149 (2014).
[Crossref] [PubMed]

J.-H. Lee and T.-H. Yoon, “Effects of phase-sepration direction of monomers on polymer wall formation and electrooptical properties of flexible smectic liquid crystal cell,” Jpn. J. Appl. Phys. 50(6R), 060203 (2011).
[Crossref]

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an nitrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

Lee, Y.

Lim, T.-K.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an nitrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

Manko, A.

A. Geivandov, A. Lazarev, A. Manko, and S. Palto, “Advanced wideband coatable LCD retarder with anomalous dispersion of optical anisotropy”, Proceedings of The 15th International Display Workshops 739–742 (2008).

Nobukawa, S.

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Ono, Y.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Palto, S.

I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
[Crossref]

A. Geivandov, A. Lazarev, A. Manko, and S. Palto, “Advanced wideband coatable LCD retarder with anomalous dispersion of optical anisotropy”, Proceedings of The 15th International Display Workshops 739–742 (2008).

A. Geivandov, A. Lazarev, P. Lazarev, and S. Palto, “Negative dispersion retarder for 3D TV applications,” International Display Workshop. 265–267 (2010).

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130–136 (1955).

Parri, O.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Sargent, J.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Shimada, H.

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Shin, S.-T.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

Shuto, H.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Skjonnemand, K.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Smith, G.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Uchiyama, A.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

Yahata, K.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Yamaguchi, M.

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Yang, S.

S. Yang, H. Lee, and J.-H. Lee, “Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film,” Opt. Eng. 55(2), 027106 (2016).
[Crossref]

J. Hwang, S. Yang, Y.-J. Choi, Y. Lee, K.-U. Jeong, and J.-H. Lee, “Single layer retarder with negative dispersion of birefringence and wide field-of-view,” Opt. Express 24(17), 19934–19939 (2016).
[Crossref] [PubMed]

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with a negative dispersion of birefringence,” Curr. Appl. Phys. 15(4), 456–460 (2015).
[Crossref]

Yatabe, T.

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

Yoon, H.-J.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Yoon, T.-H.

J.-H. Lee and T.-H. Yoon, “Effects of phase-sepration direction of monomers on polymer wall formation and electrooptical properties of flexible smectic liquid crystal cell,” Jpn. J. Appl. Phys. 50(6R), 060203 (2011).
[Crossref]

T.-H. Yoon, G.-D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25(20), 1547–1549 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Curr. Appl. Phys. (1)

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with a negative dispersion of birefringence,” Curr. Appl. Phys. 15(4), 456–460 (2015).
[Crossref]

J. Appl. Phys. (1)

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an nitrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

Jpn. J. Appl. Phys. (3)

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, J.-I. Jin, S.-B. Kwon, and S.-T. Shin, “Realization of grayscale memory operation in a step-growth based polymer-stabilized ferroelectric liquid crystal system,” Jpn. J. Appl. Phys. 45(7), 5872–5877 (2006).
[Crossref]

J.-H. Lee and T.-H. Yoon, “Effects of phase-sepration direction of monomers on polymer wall formation and electrooptical properties of flexible smectic liquid crystal cell,” Jpn. J. Appl. Phys. 50(6R), 060203 (2011).
[Crossref]

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

Liq. Cryst. (1)

I. Kasianova, E. Kharatiyan, A. Geivandov, and S. Palto, “Lyotropic liquid crystal guest-host material and anisotropic thin films for optical applications,” Liq. Cryst. 37(11), 1439–1451 (2010).
[Crossref]

Opt. Eng. (1)

S. Yang, H. Lee, and J.-H. Lee, “Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film,” Opt. Eng. 55(2), 027106 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. A. Glaser and N. A. Clark, “Fluctuations and clinicity in tilted smectic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 021711 (2002).
[Crossref] [PubMed]

Polym. J. (1)

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130–136 (1955).

Proc. SPIE (1)

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Sci. Rep. (1)

T. Danjo, Y. Enomoto, H. Shimada, S. Nobukawa, M. Yamaguchi, and T. Iwata, “Zero birefringence films of pullulan ester derivatives,” Sci. Rep. 7, 46342 (2017).
[Crossref] [PubMed]

Other (5)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, 1999) pp.242–247.

A. Geivandov, A. Lazarev, A. Manko, and S. Palto, “Advanced wideband coatable LCD retarder with anomalous dispersion of optical anisotropy”, Proceedings of The 15th International Display Workshops 739–742 (2008).

A. Geivandov, A. Lazarev, P. Lazarev, and S. Palto, “Negative dispersion retarder for 3D TV applications,” International Display Workshop. 265–267 (2010).

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Int. Symp. Digest 381–384 (2014).
[Crossref]

K. Osato and T. Kobayashi, “Novel 1/4-wave plate film for OLED panels,” SID Int. Symp. Digest 1687–1690 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Chemical structure of the host smectic RM HCM026 and the guest N2 molecules.
Fig. 2
Fig. 2 (a) Schematic illustration of the Rin(λ) measurement and (b) change of the polarization state by the Rin(λ) of the sample visualized on the Poincaré sphere.
Fig. 3
Fig. 3 (a) Rin(λ) of the samples UV-polymerized at various temperature. (b) Normalized Rin(λ) with Rin(550 nm). The lines in the graphs were linearly fitted to the experimental data.
Fig. 4
Fig. 4 (a) FT-IR absorption spectrum of the host HCM026 and the guest N2. (b) Schematic illustration of the principle of the FT-IR dichroism measurement. .
Fig. 5
Fig. 5 (a) Rin(λ)/ vs. UV curing temperature, (b) dichroic ratio of N2 vs. UV curing temperature, and (c) Rin(λ)/ vs. dichroic ratio of N2. The dichroic ratio of N2 was analyzed at the wavenumber of 1209 cm−1. Error bars were estimated from the fitting error of the experimental data.
Fig. 6
Fig. 6 Orientation of the constituent molecules which were polymerized (a) in the smectic and (b) nematic phase. (c) UV-Vis absorption spectrum of the host HCM026 and the guest N2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = cos - 1 [ S 2 sin 2 Ψ ] ; S 3 > 0
Γ = 2 π - cos - 1 [ S 2 sin 2 Ψ ] ; S 3 < 0
Ψ = 1 2 cos - 1 S 1

Metrics