Abstract

We experimentally investigate the propagation of optical pulses through a fast-light medium with competing absorption and gain. The combination of strong absorption and optical amplification in a potassium-based four-wave mixing process results in pulse peak advancements up to 88% of the input pulse width, more than 35× that which is achievable without competing absorption. We show that the enhancement occurs even when the total gain of the four-wave mixer is unity, thereby rendering the medium transparent. By varying the pulse width, we observe a transition between fast and slow light, and show that fast light is optimized for large pulse widths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of images with negative group velocities

Ryan T. Glasser, Ulrich Vogl, and Paul D. Lett
Opt. Express 20(13) 13702-13710 (2012)

Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor

G.S. Pati, M. Salit, K. Salit, and M.S. Shahriar
Opt. Express 17(11) 8775-8780 (2009)

Theoretical study of fast light with short sech pulses in coherent gain media

B. D. Clader and J. H. Eberly
J. Opt. Soc. Am. B 24(4) 916-921 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
    [Crossref] [PubMed]
  2. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062 (2005).
    [Crossref]
  3. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
    [Crossref] [PubMed]
  4. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
    [Crossref]
  5. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
    [Crossref]
  6. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
    [Crossref]
  7. M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
    [Crossref]
  8. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
    [Crossref] [PubMed]
  9. D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
    [Crossref] [PubMed]
  10. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “Fast causal information transmission in a medium with a slow group velocity,” Phys. Rev. Lett. 94, 053902 (2005).
    [Crossref] [PubMed]
  11. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [Crossref] [PubMed]
  12. A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001).
    [Crossref]
  13. R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
    [Crossref] [PubMed]
  14. R. T. Glasser, U. Vogl, and P. D. Lett, “Demonstration of images with negative group velocities,” Opt. Express 20(13), 13702 (2012).
    [Crossref] [PubMed]
  15. S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
    [Crossref]
  16. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  17. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
    [Crossref]
  18. M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [Crossref]
  19. M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
    [Crossref]
  20. M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
    [Crossref]
  21. B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
    [Crossref]
  22. J. D. Swaim and R. T. Glasser, “Squeezed-twin-beam generation in strongly absorbing media,” Phys. Rev. A 96, 033818 (2017).
    [Crossref]
  23. J. D. Swaim and R. T. Glasser, “Causality and information transfer in simultaneously slow- and fast-light media,” Opt. Express 25(20), 24376 (2017).
    [Crossref] [PubMed]
  24. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178 (2007).
    [Crossref]
  25. B. Macke and B. Ségard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23(1), 125–141 (2003).
    [Crossref]
  26. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
    [Crossref] [PubMed]
  27. J. P. Torres, M. Hendrych, and A. Valencia, “Angular dispersion: an enabling tool in nonlinear and quantum optics,” Adv. Opt. Photon. 2(3), 319 (2010).
    [Crossref]

2017 (2)

J. D. Swaim and R. T. Glasser, “Squeezed-twin-beam generation in strongly absorbing media,” Phys. Rev. A 96, 033818 (2017).
[Crossref]

J. D. Swaim and R. T. Glasser, “Causality and information transfer in simultaneously slow- and fast-light media,” Opt. Express 25(20), 24376 (2017).
[Crossref] [PubMed]

2016 (2)

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

2012 (2)

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

R. T. Glasser, U. Vogl, and P. D. Lett, “Demonstration of images with negative group velocities,” Opt. Express 20(13), 13702 (2012).
[Crossref] [PubMed]

2011 (1)

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
[Crossref]

2010 (1)

2009 (1)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
[Crossref]

2007 (5)

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
[Crossref]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178 (2007).
[Crossref]

2005 (3)

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref] [PubMed]

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062 (2005).
[Crossref]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “Fast causal information transmission in a medium with a slow group velocity,” Phys. Rev. Lett. 94, 053902 (2005).
[Crossref] [PubMed]

2004 (1)

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

2003 (2)

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

B. Macke and B. Ségard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23(1), 125–141 (2003).
[Crossref]

2001 (1)

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001).
[Crossref]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

1999 (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

1994 (1)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

1982 (1)

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

Arimondo, E.

Asano, M.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bliokh, K. Y.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Bliokh, Y. P.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Boyd, R. W.

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
[Crossref]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

Boyer, V.

Budker, D.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Camacho, R. M.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

Chiao, R. Y.

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

Chu, S.

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

Dogariu, A.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eggleton, B. J.

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Gauthier, D. J.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “Fast causal information transmission in a medium with a slow group velocity,” Phys. Rev. Lett. 94, 053902 (2005).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Glasser, R. T.

J. D. Swaim and R. T. Glasser, “Causality and information transfer in simultaneously slow- and fast-light media,” Opt. Express 25(20), 24376 (2017).
[Crossref] [PubMed]

J. D. Swaim and R. T. Glasser, “Squeezed-twin-beam generation in strongly absorbing media,” Phys. Rev. A 96, 033818 (2017).
[Crossref]

R. T. Glasser, U. Vogl, and P. D. Lett, “Demonstration of images with negative group velocities,” Opt. Express 20(13), 13702 (2012).
[Crossref] [PubMed]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Hendrych, M.

Hickmann, J. M.

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

Hollberg, L.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Howell, J. C.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

Ikuta, R.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Imoto, N.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Jelenkovic, B. M.

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

Kash, M. M.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Khurgin, J. B.

Kimball, D. F.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Kivshar, Y. S.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Kofman, A. G.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Krmpot, A. J.

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

Kuzmich, A.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Lett, P. D.

Lukin, M. D.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Macke, B.

B. Macke and B. Ségard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23(1), 125–141 (2003).
[Crossref]

McCormick, C. F.

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178 (2007).
[Crossref]

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref] [PubMed]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “Fast causal information transmission in a medium with a slow group velocity,” Phys. Rev. Lett. 94, 053902 (2005).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Nori, F.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Oishi, T.

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
[Crossref]

Özdemir, S. K.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
[Crossref]

Popescu, S.

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

Radonjic, M.

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

Rochester, S. M.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Salit, K.

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Salit, M.

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
[Crossref]

Sautenkob, V. A.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Ségard, B.

B. Macke and B. Ségard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23(1), 125–141 (2003).
[Crossref]

Shahriar, M. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
[Crossref]

Shi, Z.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Šibalic, N.

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

Solli, D. R.

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “Fast causal information transmission in a medium with a slow group velocity,” Phys. Rev. Lett. 94, 053902 (2005).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

Sultana, P.

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
[Crossref]

Swaim, J. D.

J. D. Swaim and R. T. Glasser, “Squeezed-twin-beam generation in strongly absorbing media,” Phys. Rev. A 96, 033818 (2017).
[Crossref]

J. D. Swaim and R. T. Glasser, “Causality and information transfer in simultaneously slow- and fast-light media,” Opt. Express 25(20), 24376 (2017).
[Crossref] [PubMed]

Tomita, M.

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
[Crossref]

Torres, J. P.

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Uesugi, H.

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
[Crossref]

Valencia, A.

Vogl, U.

R. T. Glasser, U. Vogl, and P. D. Lett, “Demonstration of images with negative group velocities,” Opt. Express 20(13), 13702 (2012).
[Crossref] [PubMed]

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

Vudyasetu, P. K.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Wang, L. J.

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001).
[Crossref]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Wong, S.

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

Yamamoto, T.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Yang, L.

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Yashchuk, V. V.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

Zlatkovic, B.

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Eur. Phys. J. D (1)

B. Macke and B. Ségard, “Propagation of light-pulses at a negative group-velocity,” Eur. Phys. J. D 23(1), 125–141 (2003).
[Crossref]

J. Mod. Opt. (2)

R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt. 56(18–19), 1908–1915 (2009).
[Crossref]

M. Salit, G. S. Pati, K. Salit, and M. S. Shahriar, “Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors,” J. Mod. Opt. 54(16–17), 2425–2440 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

B. Zlatković, A. J. Krmpot, N. Šibalić, M. Radonjić, and B. M. Jelenković, “Efficient parametric non-degenerate four-wave mixing in hot potassium vapor,” Laser Phys. Lett. 13(1), 015205 (2016).
[Crossref]

Nat. Comm. (1)

M. Asano, K. Y. Bliokh, Y. P. Bliokh, A. G. Kofman, R. Ikuta, T. Yamamoto, Y. S. Kivshar, L. Yang, N. Imoto, Ş. K. Özdemir, and F. Nori, “Anomalous time delays and quantum weak measurements in optical micro-resonators,” Nat. Comm. 7, 13488 (2016).
[Crossref]

Nature (4)

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ’fast-light’ optical medium,” Nature 425, 695–698 (2003).
[Crossref] [PubMed]

J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005).
[Crossref] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (5)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[Crossref] [PubMed]

M. Tomita, H. Uesugi, P. Sultana, and T. Oishi, “Causal information velocity in fast and slow pulse propagation in an optical ring resonator,” Phys. Rev. A 84, 043843 (2011).
[Crossref]

J. D. Swaim and R. T. Glasser, “Squeezed-twin-beam generation in strongly absorbing media,” Phys. Rev. A 96, 033818 (2017).
[Crossref]

A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001).
[Crossref]

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[Crossref]

Phys. Rev. Lett. (8)

R. T. Glasser, U. Vogl, and P. D. Lett, “Stimulated generation of superluminal light pulses via four-wave mixing,” Phys. Rev. Lett. 108, 173902 (2012).
[Crossref] [PubMed]

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[Crossref]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[Crossref]

M. M. Kash, V. A. Sautenkob, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[Crossref]

D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: A connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004).
[Crossref] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “Fast causal information transmission in a medium with a slow group velocity,” Phys. Rev. Lett. 94, 053902 (2005).
[Crossref] [PubMed]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light Fourier transform interferometer,” Phys. Rev. Lett. 99, 240801 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Setup for generating fast light. Four-wave mixing occurs when a strong pump field interacts with a weak, detuned probe in the center of a 39K atomic vapor cell. The input probe pulses are produced by passing some of the light through an AOM which is pulsed with an AWG. The 4WM conjugate and probe pulses are then detected and compared with a reference pulse which is directed around the vapor cell. λ/2: half-wave plate; λ/4: quarter-wave plate; AOM: acoustic-optical modulator; AWG: arbitrary waveform generator; SMF: single mode fiber.
Fig. 2
Fig. 2 Fast light. (a) The probe and conjugate are advanced by 76% and 88% with respect to the input pulse of width τ = 260 ns. The 4WM resonances are shown in the inset, and the dashed vertical line indicates the two-photon detuning where fast light occurs. (b) Advancements in the transparent regime, accompanied by some additional pulse distortion.
Fig. 3
Fig. 3 Tunable advancements and pulse bandwidth. (a) When 4WM is tuned for fast light, superluminality is optimized for longer pulse widths. (b) Pulse distortion associated with both fast and slow light is minimized for bandwidths close to those which give zero advancement (indicated with dashed, vertical lines).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k ( ω ) = ( ω / c ) n ( ω ) = ( ω / c ) ln ( g 0 ) / L γ 0 2 ( ω ω 0 + i γ 0 )

Metrics