Abstract

Distributed vibration sensing in optical fibers opened entirely new opportunities and penetrated various sectors from security to seismic monitoring. Here, we demonstrate a most simple and robust approach for dynamic strain measurement using wavelength-scanning coherent optical time domain reflectometry (C-OTDR). Our method is based on laser current modulation and Rayleigh backscatter shift correlation. As opposed to common single-wavelength phase demodulation techniques, also the algebraic sign of the strain change is retrieved. This is crucial for the intended applications in structural health monitoring and modal analysis. A linear strain response down to 47.5 pε and strain noise of 100 pε/√Hz is demonstrated for repetition rates in the kHz range. A field application of a vibrating bridge is presented. Our approach provides a cost-effective high-resolution method for structural vibration analysis and geophysical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Relative change measurement of physical quantities using dual-wavelength coherent OTDR

Sascha Liehr, Yonas Seifu Muanenda, Sven Münzenberger, and Katerina Krebber
Opt. Express 25(2) 720-729 (2017)

Real-time dynamic strain sensing in optical fibers using artificial neural networks

Sascha Liehr, Lena Ann Jäger, Christos Karapanagiotis, Sven Münzenberger, and Stefan Kowarik
Opt. Express 27(5) 7405-7425 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (CRC, 2017).
  2. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: A novel technique for investigating attenuation characteristics,” Appl. Opt. 15(9), 2112–2115 (1976).
    [Crossref] [PubMed]
  3. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  4. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  5. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  6. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref]
  7. A. Bergman, T. Langer, and M. Tur, “Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers,” Opt. Express 25(5), 5376–5388 (2017).
    [Crossref] [PubMed]
  8. S. V. Shatalin, V. N. Treschikov, and A. J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” Appl. Opt. 37(24), 5600–5604 (1998).
    [Crossref] [PubMed]
  9. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  10. Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
    [Crossref]
  11. Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, “Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer,” Appl. Opt. 55(28), 7810–7815 (2016).
    [Crossref] [PubMed]
  12. A. Hartog and K. Kader, “Distributed fiber optic sensor system with improved linearity,” U.S. patent US9170149B2 (2012).
  13. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
    [Crossref]
  14. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
    [Crossref] [PubMed]
  15. J. P. Dakin and C. Lamb, “Distributed fibre optic sensor system,” U.S. patent GB 2 222 247A (1990).
  16. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
    [Crossref]
  17. Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse phi-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
    [Crossref] [PubMed]
  18. R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
    [Crossref]
  19. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  20. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
    [Crossref]
  21. Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
    [Crossref]
  22. A. H. Hartog and L. B. Liokumovich, “Phase sensitive coherent otdr with multi-frequency interrogation,” U.S. patent WO2013066654 A1 (2013).
  23. F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
    [Crossref]
  24. Z. Wang, Z. Pan, Z. Fang, Q. Ye, B. Lu, H. Cai, and R. Qu, “Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source,” Opt. Lett. 40(22), 5192–5195 (2015).
    [Crossref] [PubMed]
  25. D. Iida, K. Toge, and T. Manabe, “Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR,” Opt. Fiber Technol. 36, 19–25 (2017).
    [Crossref]
  26. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  27. L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
    [Crossref]
  28. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
    [Crossref] [PubMed]
  29. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  30. S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
    [Crossref] [PubMed]
  31. P. Rohwetter, R. Eisermann, and K. Krebber, “Random quadrature demodulation for direct detection single-pulse Rayleigh C-OTDR,” J. Lightwave Technol. 34(19), 4437–4444 (2016).
    [Crossref]

2018 (1)

2017 (3)

2016 (5)

2015 (7)

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

Z. Wang, Z. Pan, Z. Fang, Q. Ye, B. Lu, H. Cai, and R. Qu, “Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source,” Opt. Lett. 40(22), 5192–5195 (2015).
[Crossref] [PubMed]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
[Crossref]

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

2014 (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2012 (1)

2011 (2)

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

2009 (2)

2005 (1)

2000 (1)

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

1998 (1)

1976 (1)

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Bao, X.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Barnoski, M. K.

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Bergman, A.

Bernini, R.

Cai, H.

Chen, L.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Chen, X.

Choi, K. N.

Di Pasquale, F.

Dong, Y.

Eisermann, R.

Fan, M.

Fang, Z.

Faralli, S.

Feng, H.

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
[Crossref]

Fu, C.

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Garcia-Ruiz, A.

Gonzalez-Herraez, M.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Guo, Z.

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Hogari, K.

Hua, J.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Iida, D.

D. Iida, K. Toge, and T. Manabe, “Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR,” Opt. Fiber Technol. 36, 19–25 (2017).
[Crossref]

Imahama, M.

Jensen, S. M.

Johnson, G. A.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Juarez, J. C.

Koyamada, Y.

Krebber, K.

Kubota, K.

Langer, T.

Liehr, S.

Liu, E.

Loayssa, A.

Lu, B.

Lu, X.

Lu, Z.

Maier, E. W.

Manabe, T.

D. Iida, K. Toge, and T. Manabe, “Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR,” Opt. Fiber Technol. 36, 19–25 (2017).
[Crossref]

Martin-Lopez, S.

Martins, H. F.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Minardo, A.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Motil, A.

Muanenda, Y.

Muanenda, Y. S.

Münzenberger, S.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Nakarmi, B.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Oton, C. J.

Pan, Y.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Pan, Z.

Pastor-Graells, J.

Peled, Y.

Peng, F.

Posey, R.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Qian, X.

Qin, Z.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Qu, R.

Rao, J.

Rao, Y.

Rogers, A. J.

Rohwetter, P.

Sagues, M.

Sergachev, I. A.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Shatalin, S. V.

Shi, Y.

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
[Crossref]

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Soto, M. A.

Sun, W.

Sun, Z.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Taylor, H. F.

Thévenaz, L.

Toge, K.

D. Iida, K. Toge, and T. Manabe, “Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR,” Opt. Fiber Technol. 36, 19–25 (2017).
[Crossref]

Treschikov, V. N.

Tu, G.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Tur, M.

Urricelqui, J.

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Vohra, S. T.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Wang, F.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Wang, S.

Wang, X.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Wang, Z.

Xia, L.

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Xue, N.

Yaron, L.

Ye, Q.

Zeng, Z.

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
[Crossref]

Zeni, L.

Zhang, H.

Zhang, L.

Zhang, X.

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhang, Y.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

Zhou, L.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Zhu, F.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

Zhu, T.

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Zornoza, A.

Appl. Opt. (3)

Electron. Lett. (1)

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in an optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

F. Zhu, X. Zhang, L. Xia, Z. Guo, and Y. Zhang, “Active compensation method for light source frequency drifting in Phi-OTDR sensing system,” IEEE Photonics Technol. Lett. 27(24), 2523–2526 (2015).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Phi-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed strain and vibration sensing system sased on phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Int. J. Distrib. Sens. Netw. (1)

Y. Shi, H. Feng, and Z. Zeng, “Phase-sensitive optical time domain reflectometer with dual-wavelength probe pulse,” Int. J. Distrib. Sens. Netw. 11(5), 624643 (2015).
[Crossref]

J. Lightwave Technol. (3)

Laser Phys. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Express (8)

S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
[Crossref] [PubMed]

A. Bergman, T. Langer, and M. Tur, “Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers,” Opt. Express 25(5), 5376–5388 (2017).
[Crossref] [PubMed]

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse phi-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
[Crossref] [PubMed]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

D. Iida, K. Toge, and T. Manabe, “Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR,” Opt. Fiber Technol. 36, 19–25 (2017).
[Crossref]

Opt. Lett. (2)

Quantum Electron. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, I. A. Sergachev, and D. E. Simikin, “Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses,” Quantum Electron. 44(10), 965–969 (2014).
[Crossref]

Other (4)

A. H. Hartog and L. B. Liokumovich, “Phase sensitive coherent otdr with multi-frequency interrogation,” U.S. patent WO2013066654 A1 (2013).

A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (CRC, 2017).

A. Hartog and K. Kader, “Distributed fiber optic sensor system with improved linearity,” U.S. patent US9170149B2 (2012).

J. P. Dakin and C. Lamb, “Distributed fibre optic sensor system,” U.S. patent GB 2 222 247A (1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the pulse generation and frequency sweep approach.
Fig. 2
Fig. 2 (a) Simulated power results I(tsνp) during a sinusoidal strain signal of 1 µε peak amplitude for one fiber position z and a set of N = 1000 scatterers (fs = 1 kHz, fp = 200 kHz, τd = 6 ns, Δνp = 5 GHz, Δν = 25 MHz). (b) Strain-equivalent power shift of Iνp) for the sweep times ts = 0 s and ts = 0.15 s (Δε = 2 µε).
Fig. 3
Fig. 3 (a) Measured frequency change Δνp relative to ν0 during the laser current modulation, obtained from phase change analysis in an unbalanced Mach-Zehnder interferometer (fs = 1 kHz, fp = 200 kHz, τd = 10 ns, Δνp = 4.15 GHz, Δν = 23.07 MHz). (b) Measured and numerically linearized Iνp) during the sweep period τs.
Fig. 4
Fig. 4 Schematic of the wavelength-scanning coherent OTDR implementation.
Fig. 5
Fig. 5 (a) Temporal strain distribution of a strained fiber section (97 nε peak amplitude at 20 Hz) from z = 936.5 m to z = 950.5 m. (b) Strain for a single sensor position during the same measurement at z = 942.11 m. (c) Measured raw data for strain results in (a) and (b): backscattering power I(tsνp) at the position z = 942.11 m for 250 frequency sweeps (left) and two single sweep results Iνp) at the sweep times ts = 0 ms and ts = 25 ms (right). The y-axis refers to both subplots of (c). (d) Correlation result Rref,s(q) and interpolated result R’ref,s(q’) of the sweep measurements shown in the right panel of (c). (e) Strain amplitude spectral density plot for a 120 Hz signal with 97 nε amplitude (one second measurement time). The strain amplitudes of the fiber region wound in the center of the piezo tube exhibit slightly reduced strain amplitudes due to the non-uniform diameter change of the piezo tube. Parameters for all measurements in Fig. 5: fs = 1 kHz, fp = 100 kHz, τp = 20 ns, Δνp = 1.01 GHz, Δν = 11.94 MHz
Fig. 6
Fig. 6 Strain amplitude spectral density and strain amplitude at positions with (z = 944.77 m) strain modulation and without (z = 953.96 m) strain modulation (fs = 1 kHz, fp = 100 kHz, τd = 20 ns, Δνp = 1.01 GHz, Δν = 11.94 MHz, 100 s measurement time).
Fig. 7
Fig. 7 Measured strain peak amplitudes from spectral strain amplitude analysis as a function of piezo modulation voltage. Δεs ≈79 nε indicates the equivalent measurement frequency step size of Δν ≈11.94 MHz. (fs = 1 kHz, fp = 100 kHz, τd = 20 ns, Δνp = 1.01 GHz).
Fig. 8
Fig. 8 (a) Measured I(tsνp) of an amplitude modulated 10 Hz harmonic strain signal for one fiber position (fs = 1 kHz, fp = 200 kHz, τd = 10 ns, Δνp = 2.06 GHz, Δν = 11.84 MHz). (b) Continuously extending reference I(trefνp´) over time as the strain amplitude exceeds the boundaries of Δνp. (c) Measured strain result from correlation with I(trefνp´).
Fig. 9
Fig. 9 (a) Images and schematic of the bridge model with applied sensor fiber and shaker. (b) Measured strain distribution along the length of the bridge during the shaker excitation (< 80 Hz) with a white noise signal (fs = 1 kHz, fp = 200 kHz, τd = 10 ns, Δνp = 4.15 GHz, Δν = 23.07 MHz). (c) Measured strain at two fiber locations: In the middle of one span and after the bridge. (d) Strain amplitude spectrum along the bridge indicating the mode shapes and modal frequencies of the structure (from 50 s measurement). The broad spectral content at 123.5 m is due to temperature and strain drifts at an exposed and not surface-bonded section of the fiber.

Tables (1)

Tables Icon

Table 1 Strain ASD noise in nε/sqrt(Hz) at fs = 1 kHz for various nominal spatial resolutions (0.5 m to 5 m) and distance ranges zmax

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I( t, t z )= | i=1 N r i E ^ 0 e j2π ν 0 ( t z τ i ( t ) ) rect( t z τ i ( t ) τ d ) | 2 = I d ( t z )+ I coh ( t, t z )= i=1 N r i I 0 rect( t z τ i τ d )+ I coh ( t, t z )
I coh ( t, t z )= i=2 N e=1 i1 2 r i r e I 0 cos[ 2π ν 0 τ ie ( t ) ]rect[ t z τ i ( t ) τ d ]rect[ t z τ e ( t ) τ d ]
Δ ν p ν 0 = Δ τ ie τ ie =( 1 p e )Δε= K ε Δε 0.78 Δε Δ ν p ν 0 = Δ τ ie τ ie =( ξ+α )ΔT= K T ΔT 6.92× 10 6 ΔT
τ ie Δ τ ie ( t )=  τ ie [ 1+ K ε Δε( t, t z )+ K T ΔT( t, t z ) ]
I( t, t z ,Δ ν p )= I d ( t z )+ i=2 N e=1 i1 2 r i r e I 0 cos{ 2π( ν 0 +Δ ν p ) τ ie [ 1+ K ε Δε( t, t z )+ K T ΔT( t, t z ) ] } ×rect[ t z τ i ( t ) τ d ]rect[ t z τ e ( t ) τ d ]
Δ ν m ( t s , t z )= argmin q [ R ref,s ( q ) ]Δν
R ref,s ( q )={ 1 mq p=0 mq [ I( t ref , t z ,Δ ν p+q )I( t s , t z ,Δ ν p ) ] 2 R s,ref ( q ) q0 q<0
Δε( t s , t z )= Δ ν m ( t s , t z ) K ε ν 0

Metrics