Abstract

We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm3) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of high-power diode-end-pumped Tm:YLF laser in slab geometry

Yingjie Shen, Xiaoming Duan, Jinhe Yuan, Tongyu Dai, Baoquan Yao, and Yuezhu Wang
Appl. Opt. 54(8) 1958-1962 (2015)

Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06  μm

Xinlu Zhang, Su Zhang, Nana Xiao, Jinhui Cui, Jiaqun Zhao, and Li Li
Appl. Opt. 53(8) 1488-1492 (2014)

Tm:YLF slab wavelength-selected laser

H. J. Strauss, M. J. D. Esser, G. King, and L. Maweza
Opt. Mater. Express 2(8) 1165-1170 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal (2010).
  2. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
    [Crossref]
  3. M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
    [Crossref]
  4. M. Schellhorn, S. Ngcobo, C. Bollig, M. J. D. Esser, D. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in CLEO/Europe and EQEC 2009 Conference Digest (2009), Paper CA1_3 (Optical Society of America, 2009), p. CA1_3.
  5. H. J. Strauss, D. Preussler, M. J. D. Esser, W. Koen, C. Jacobs, O. J. P. Collett, and C. Bollig, “330 mJ single-frequency Ho:YLF slab amplifier,” Opt. Lett. 38(7), 1022–1024 (2013).
    [Crossref] [PubMed]
  6. J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
    [Crossref]
  7. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
    [Crossref]
  8. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  9. F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
    [Crossref]
  10. D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
    [Crossref]
  11. J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
    [Crossref]
  12. J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
    [Crossref]
  13. P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
    [Crossref]
  14. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 µm,” Opt. Lett. 32(14), 2040–2042 (2007).
    [Crossref] [PubMed]
  15. G. Stoeppler, D. Parisi, M. Tonelli, and M. Eichhorn, “High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser,” Opt. Lett. 37(7), 1163–1165 (2012).
    [Crossref] [PubMed]
  16. X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
    [Crossref] [PubMed]
  17. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  18. Http://Hitran.Iao.Ru (2018).
  19. Y. Suzaki and A. Tachibana, “Measurement of the µm sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt. 14(12), 2809–2810 (1975).
    [Crossref] [PubMed]

2017 (1)

2013 (2)

2012 (1)

2010 (1)

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

2009 (4)

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[Crossref] [PubMed]

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

2008 (1)

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]

2007 (1)

2006 (1)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

2004 (1)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1975 (1)

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Bollig, C.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, G. Z.

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

Cheng, X.

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Collett, O. J. P.

Coluccelli, N.

Cornacchia, F.

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 µm,” Opt. Lett. 32(14), 2040–2042 (2007).
[Crossref] [PubMed]

Di Lieto, A.

Eichhorn, M.

Esser, M. J. D.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Galzerano, G.

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Griebner, U.

Hang, Y.

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[Crossref] [PubMed]

He, M. Z.

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

He, X. M.

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

Hofer, M.

J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
[Crossref]

Hoffmann, D.

J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
[Crossref]

Hu, P.

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

Jacobs, C.

Klimin, S. A.

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Koen, W.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Laporta, P.

Li, J.

J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
[Crossref]

Loiko, P.

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Mateos, X.

Meissner, A.

J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
[Crossref]

Ngcobo, S.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Parisi, D.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Peng, H.

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

X. Cheng, S. Zhang, J. Xu, H. Peng, and Y. Hang, “High-power diode-end-pumped Tm:LiLuF4 slab lasers,” Opt. Express 17(17), 14895–14901 (2009).
[Crossref] [PubMed]

Peng, H. Y.

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

Petros, M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Petrov, V.

Popova, M. N.

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Preussler, D.

Pytalev, D. S.

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Schellhorn, M.

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

Serres, J. M.

Shepherd, D. P.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

So, S.

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Stoeppler, G.

Strauss, H. J.

Suzaki, Y.

Tacchini, S.

Tachibana, A.

Tonelli, M.

Veronesi, S.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Xiong, J.

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

Xu, J.

Yang, S. H.

J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
[Crossref]

Yu, J.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

Yumashev, K.

Zhang, L.

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

Zhang, L. H.

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

Zhang, S.

Zhao, C. C.

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94(2), 195–198 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and Diode-Pumped Laser Experiments of LiLuF4:Tm3+ Crystals,” IEEE J. Quantum Electron. 44(11), 1076–1082 (2008).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr4 laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

J. Appl. Phys. (2)

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Phys. Appl. Phys. (1)

J. Xiong, H. Peng, P. Hu, Y. Hang, and L. Zhang, “Optical characterization of Tm 3+ in LiYF 4 and LiLuF 4 crystals,” J. Phys. Appl. Phys. 43(18), 185402 (2010).
[Crossref]

J. Rare Earths (1)

D. S. Pytalev, S. A. Klimin, and M. N. Popova, “Optical high-resolution spectroscopic study of Tm3+ crystal-field levels in LiLuF4,” J. Rare Earths 27(4), 624–626 (2009).
[Crossref]

Laser Phys. Lett. (2)

J. Xiong, H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen, “Crystal growth, spectroscopic characterization, and laser performance of Tm:LiLuF4 crystal,” Laser Phys. Lett. 6(12), 868–871 (2009).
[Crossref]

J. Li, S. H. Yang, A. Meissner, M. Hofer, and D. Hoffmann, “A 200 W INNOSLAB Tm:YLF laser,” Laser Phys. Lett. 10(5), 055002 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (3)

Http://Hitran.Iao.Ru (2018).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm Laser Sources and Their Possible Applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Bishnu Pal (2010).

M. Schellhorn, S. Ngcobo, C. Bollig, M. J. D. Esser, D. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in CLEO/Europe and EQEC 2009 Conference Digest (2009), Paper CA1_3 (Optical Society of America, 2009), p. CA1_3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1 Top view of the laser setup (λ/2: Half-wave plate, Lens: 80 mm focal length, OC: output coupler, HR mirror: high reflectivity at laser wavelength and 500 mm or 150 mm radius of curvature, Crystal: Tm:YLF or Tm:LLF).
Fig. 2
Fig. 2 Diode stack normalized intensity as a function of the wavelength for seven different output powers and for a water cooling temperature of 20°C.
Fig. 3
Fig. 3 Simulation of the cavity mode radius in the middle of the crystal as a function of the thermal lens focal length. The high reflectivity cavity mirror has a radius of curvature of 150 mm.
Fig. 4
Fig. 4 Tm:YLF and Tm:LLF laser output powers as a function of the incident pump power for a pump polarization perpendicular to the c-axis of the crystal (left), inset laser beam profile at maximum output power. Percentage of the pump transmitted through the crystal as a function of the incident pump power while the laser is operated (right).
Fig. 5
Fig. 5 Tm:YLF and Tm:LLF laser output powers as a function of the incident pump power for a pump polarization parallel to the c-axis of the crystal (left). Percentage of the pump transmitted through the crystal as a function of the incident pump power while the laser is operated (right).
Fig. 6
Fig. 6 Tm:YLF and Tm:LLF lasers output power as a function of the incident pump power (left) and absorbed pump power (right) for two pump beam polarizations and best linear fit to the data (right).
Fig. 7
Fig. 7 Tm:LLF and Tm:YLF lasers beam propagation factor measurement at 140 W output power and for a pump π-polarized. The graphs represent the laser beam radius in the direction perpendicular ( M y 2 ) and parallel ( M x 2 ) to the c-axis as a function of the distance after the 75 mm focal length focusing lens. Solid curves are fits to a standard Gaussian beam propagation expression.
Fig. 8
Fig. 8 Tm:LLF laser beam radius in the direction perpendicular to the c-axis plotted as a function of the distance after the 75 mm focal length focusing lens, at different output powers. Solid curves are fits to a standard Gaussian beam propagation expression.
Fig. 9
Fig. 9 Tm:LLF laser output powers as a function of the incident pump power (left) and as a function of the absorbed pump power (right) for five output coupler reflectivities. The slope efficiencies are given with respect to absorbed pump power as result of linear fits to the experimental data (right).
Fig. 10
Fig. 10 Tm:YLF laser output powers as a function of the incident pump power (left) and as a function of the absorbed pump power (right) for five output coupler reflectivities. The slope efficiencies are given with respect to absorbed pump power as result of linear fits to the experimental data (right).
Fig. 11
Fig. 11 Inverse of the slope efficiency multiplied by the ratio of pump and laser wavelength versus the inverse of the output coupler transmission for the Tm:LLF laser (left) and Tm:YLF laser (right).
Fig. 12
Fig. 12 Tm:LLF laser normalized power density for five output coupler reflectivities as a function of wavelength at maximum pump power. In grey: atmospheric transmission as a function of the wavelength (Pressure: 1 atm - Optical path: 2 m - USA model, mean latitude, summer, H = 0) [18].
Fig. 13
Fig. 13 Tm:YLF laser normalized power density for five output coupler reflectivities as a function of wavelength at maximum pump power. In grey: atmospheric transmission as a function of the wavelength (Pressure: 1 atm - Optical path: 2 m - USA model, mean latitude, summer, H = 0) [18].
Fig. 14
Fig. 14 Tm:LLF laser output power as a function of the incident pump power (left) and as a function of the absorbed pump power (right) for six crystal cooling water temperatures using the output coupler with a reflectivity of R = 81%. Slope efficiencies are given as result of linear fits to the experimental data (right).
Fig. 15
Fig. 15 Tm:YLF laser output power as a function of the incident pump power (left) and as a function of the absorbed pump power (right) for six crystal cooling water temperatures using the output coupler with a reflectivity of R = 81%. Slope efficiencies are given as result of linear fits to the experimental data (right).
Fig. 16
Fig. 16 Left graph: Tm:LLF (right graph: Tm:YLF) laser output power as a function of crystal cooling water temperature at three pump power levels using the output coupler with a reflectivity of R = 81%. Solid lines are best linear fits to the data.
Fig. 17
Fig. 17 Simulation of the cavity mode radius in the middle of the crystal as a function of the thermal lens focal length. The high reflectivity cavity mirror has a radius of curvature of 500 mm.
Fig. 18
Fig. 18 Tm:YLF and Tm:LLF laser output powers as a function of the incident pump power for a pump polarization perpendicular to the c-axis of the crystal (left). Percentage of the pump transmitted through the crystal as a function of the incident pump power while the laser is operated (right).
Fig. 19
Fig. 19 Tm:YLF laser output powers as a function of the incident pump power (left) and absorbed pump power (right) for two pump beam polarizations and for two HR mirror radius of curvatures. Solid lines are linear fits to the data.
Fig. 20
Fig. 20 Tm:YLF and Tm:LLF laser output powers as a function of the absorbed pump power for two pump beam polarizations. Solid lines are linear fits to the data.
Fig. 21
Fig. 21 Tm:YLF laser output power as a function of the incident pump power for different diode and crystal water cooling temperatures for a pump π-polarized.
Fig. 22
Fig. 22 Tm:YLF laser beam propagation factor measurement at different output power levels and for a pump π-polarized. The left (right) graph represents the laser beam diameter in the direction perpendicular (parallel) to the c-axis as a function of the distance after the 150 mm focal length focusing lens. Solid curves are fits to a standard Gaussian beam propagation expression. Left inset: collimated beam profile at maximum output power.

Metrics