Abstract

This paper proposes and demonstrates a particle free method for flow field visualizations by analyzing liquid crystal polarizations. The proposed concept is implemented by imaging of liquid crystal flow under microfluidic environment using a crossed polarization microscopy configuration. Fringe patterns give good representation of flow characterizations for different nozzle/diffuser microchannel designs. The obtained results demonstrate that the flow field under various conditions can be evaluated. Visualizations of the flow fields are carried out by the liquid crystal polarization induced fringe patterns in nozzle/diffuser microchannels. We achieve good match between the flow field obtained by LC polarization and the simulated one. It is envisaged that the proposed methodology can make a potential impact in flow field visualization studies and related analysis.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy

T. Cacace, A. García-García, G. Zito, V. Tkachenko, G. Rusciano, M. A. Geday, J.M. Otón, A. Marino, and A. Sasso
Opt. Express 24(14) 15954-15964 (2016)

Polarization properties of inversely twisted nematic liquid-crystal gratings

Zhan He and Susumu Sato
Appl. Opt. 37(28) 6755-6763 (1998)

Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals

Andy Ying-Guey Fuh, Che-Chang Chen, Cheng-Kai Liu, and Ko-Ting Cheng
Opt. Express 17(9) 7088-7094 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Kim, B. Senyuk, and O. D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. Commun. 3, 1133 (2012).
    [Crossref] [PubMed]
  2. C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
    [Crossref] [PubMed]
  3. A. Sengupta, “Tuning fluidic resistance via liquid crystal microfluidics,” Int. J. Mol. Sci. 14, 22826–22844 (2013).
    [Crossref] [PubMed]
  4. E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
    [Crossref] [PubMed]
  5. T. Bera and J. Fang, “Interaction of surfactants and polyelectrolyte-coated liquid crystal droplets,” J. Mater. Sci. Chem. Eng. 02, 1–7 (2014).
  6. A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
    [Crossref]
  7. A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,” Soft Matter 7, 6542 (2011).
    [Crossref]
  8. S. Shojaei-Zadeh and S. L. Anna, “Role of surface anchoring and geometric confinement on focal conic textures in smetic-a liquid crystal,” Langmuir 22, 9986–9993 (2006).
    [Crossref] [PubMed]
  9. A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
    [Crossref]
  10. L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
    [Crossref]
  11. V. G. Bondar, D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74, 60–67 (1992).
  12. B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
    [Crossref]
  13. R. Ranjini, M. V. Matham, and N. T. Nguyen, “Conoscopic analysis of electric field driven planar aligned nematic liquid crystal,” Appl. Opt. 53, 2773–2776 (2014).
    [Crossref] [PubMed]
  14. M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5cb,” Molec. Cryst. Liquid Cryst. Sci. Technol. 331, 49–57 (1999).
    [Crossref]
  15. D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
    [Crossref]
  16. S. Faetti, L. Fronzoni, and P. A. Rolla, “Static and dynamic behavior of the vortex-electrohydrodynamic instability in freely suspended layers of nematic liquid crystals,” J. Chem. Phys. 79, 5054 (1983).
    [Crossref]
  17. Y. Zhao, R. Wang, and C. Yang, “Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches,” Int. J. Heat Mass Transf. 108, 1048–1056 (2017).
    [Crossref]
  18. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
    [Crossref]
  19. K. S. Brittain, X.M. Zhao, and G. Whitesides, “Softlithography and microfabrication,” Phys. World 11, 31–36 (1998).
    [Crossref]
  20. N.-T. Wereley, Fundamentals and applications of microfluidics (Artech House, 2002).
  21. K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
    [Crossref]
  22. S. Kralj, S. Žumer, and D. Allender, “Nematic-isotropic phase transition in a liquid-crystal droplet,” Phys. Rev. A 43, 2943–2952 (1991).
    [Crossref] [PubMed]
  23. X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
    [Crossref]
  24. P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
    [Crossref]
  25. N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
    [Crossref] [PubMed]
  26. A. Groisman and S. Quake, “A microfluidic rectifier: Anisotropic flow resistance at low reynolds numbers,” Phys. Rev. Lett. 92, 094501 (2004).
    [Crossref] [PubMed]
  27. Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
    [Crossref]
  28. L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
    [Crossref] [PubMed]
  29. T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
    [Crossref]
  30. I. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (CRC Press, 2004).
  31. Y. Huang, Y. L. Wang, and T. N. Wong, “Ac electric field controlled non-newtonian filament thinning and droplet formation on the microscale,” Lab Chip 17, 2969–2981 (2017).
    [Crossref] [PubMed]
  32. H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
    [Crossref] [PubMed]

2018 (1)

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

2017 (5)

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Y. Huang, Y. L. Wang, and T. N. Wong, “Ac electric field controlled non-newtonian filament thinning and droplet formation on the microscale,” Lab Chip 17, 2969–2981 (2017).
[Crossref] [PubMed]

H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
[Crossref] [PubMed]

Y. Zhao, R. Wang, and C. Yang, “Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches,” Int. J. Heat Mass Transf. 108, 1048–1056 (2017).
[Crossref]

2014 (2)

T. Bera and J. Fang, “Interaction of surfactants and polyelectrolyte-coated liquid crystal droplets,” J. Mater. Sci. Chem. Eng. 02, 1–7 (2014).

R. Ranjini, M. V. Matham, and N. T. Nguyen, “Conoscopic analysis of electric field driven planar aligned nematic liquid crystal,” Appl. Opt. 53, 2773–2776 (2014).
[Crossref] [PubMed]

2013 (2)

A. Sengupta, “Tuning fluidic resistance via liquid crystal microfluidics,” Int. J. Mol. Sci. 14, 22826–22844 (2013).
[Crossref] [PubMed]

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

2012 (5)

Y. K. Kim, B. Senyuk, and O. D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. Commun. 3, 1133 (2012).
[Crossref] [PubMed]

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
[Crossref]

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

2011 (2)

A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,” Soft Matter 7, 6542 (2011).
[Crossref]

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

2010 (2)

P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
[Crossref]

B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
[Crossref]

2008 (2)

N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
[Crossref] [PubMed]

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

2006 (2)

S. Shojaei-Zadeh and S. L. Anna, “Role of surface anchoring and geometric confinement on focal conic textures in smetic-a liquid crystal,” Langmuir 22, 9986–9993 (2006).
[Crossref] [PubMed]

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

2005 (1)

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[Crossref]

2004 (1)

A. Groisman and S. Quake, “A microfluidic rectifier: Anisotropic flow resistance at low reynolds numbers,” Phys. Rev. Lett. 92, 094501 (2004).
[Crossref] [PubMed]

1999 (1)

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5cb,” Molec. Cryst. Liquid Cryst. Sci. Technol. 331, 49–57 (1999).
[Crossref]

1998 (1)

K. S. Brittain, X.M. Zhao, and G. Whitesides, “Softlithography and microfabrication,” Phys. World 11, 31–36 (1998).
[Crossref]

1992 (1)

V. G. Bondar, D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74, 60–67 (1992).

1991 (1)

S. Kralj, S. Žumer, and D. Allender, “Nematic-isotropic phase transition in a liquid-crystal droplet,” Phys. Rev. A 43, 2943–2952 (1991).
[Crossref] [PubMed]

1983 (1)

S. Faetti, L. Fronzoni, and P. A. Rolla, “Static and dynamic behavior of the vortex-electrohydrodynamic instability in freely suspended layers of nematic liquid crystals,” J. Chem. Phys. 79, 5054 (1983).
[Crossref]

Abbott, N. L.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Aguirre, L. E.

L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
[Crossref]

Allender, D.

S. Kralj, S. Žumer, and D. Allender, “Nematic-isotropic phase transition in a liquid-crystal droplet,” Phys. Rev. A 43, 2943–2952 (1991).
[Crossref] [PubMed]

Alves, M. A.

P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
[Crossref]

An, T.

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

Anna, S. L.

S. Shojaei-Zadeh and S. L. Anna, “Role of surface anchoring and geometric confinement on focal conic textures in smetic-a liquid crystal,” Langmuir 22, 9986–9993 (2006).
[Crossref] [PubMed]

Anoardo, E.

L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
[Crossref]

Archer, A. J.

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

Avelino, P. P.

B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
[Crossref]

Bahr, C.

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,” Soft Matter 7, 6542 (2011).
[Crossref]

Bera, T.

T. Bera and J. Fang, “Interaction of surfactants and polyelectrolyte-coated liquid crystal droplets,” J. Mater. Sci. Chem. Eng. 02, 1–7 (2014).

Bondar, V. G.

V. G. Bondar, D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74, 60–67 (1992).

Brittain, K. S.

K. S. Brittain, X.M. Zhao, and G. Whitesides, “Softlithography and microfabrication,” Phys. World 11, 31–36 (1998).
[Crossref]

Buka, A.

L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
[Crossref]

Cadwell, K. D.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Caggioni, M.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

Caruso, F.

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Chang, H.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Cohen, I.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

Cui, M.

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5cb,” Molec. Cryst. Liquid Cryst. Sci. Technol. 331, 49–57 (1999).
[Crossref]

Cummings, L. J.

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

de Oliveira, B. F.

B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
[Crossref]

Duan, F.

H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
[Crossref] [PubMed]

Éber, N.

L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
[Crossref]

Faetti, S.

S. Faetti, L. Fronzoni, and P. A. Rolla, “Static and dynamic behavior of the vortex-electrohydrodynamic instability in freely suspended layers of nematic liquid crystals,” J. Chem. Phys. 79, 5054 (1983).
[Crossref]

Fang, J.

T. Bera and J. Fang, “Interaction of surfactants and polyelectrolyte-coated liquid crystal droplets,” J. Mater. Sci. Chem. Eng. 02, 1–7 (2014).

Feng, H.

H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
[Crossref] [PubMed]

Fronzoni, L.

S. Faetti, L. Fronzoni, and P. A. Rolla, “Static and dynamic behavior of the vortex-electrohydrodynamic instability in freely suspended layers of nematic liquid crystals,” J. Chem. Phys. 79, 5054 (1983).
[Crossref]

Groisman, A.

A. Groisman and S. Quake, “A microfluidic rectifier: Anisotropic flow resistance at low reynolds numbers,” Phys. Rev. Lett. 92, 094501 (2004).
[Crossref] [PubMed]

Herminghaus, S.

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

Ho, S. S.

N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
[Crossref] [PubMed]

Y. Huang, Y. L. Wang, and T. N. Wong, “Ac electric field controlled non-newtonian filament thinning and droplet formation on the microscale,” Lab Chip 17, 2969–2981 (2017).
[Crossref] [PubMed]

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Johnston, A. P. R.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Kelly, J. R.

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5cb,” Molec. Cryst. Liquid Cryst. Sci. Technol. 331, 49–57 (1999).
[Crossref]

Kim, Y. K.

Y. K. Kim, B. Senyuk, and O. D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. Commun. 3, 1133 (2012).
[Crossref] [PubMed]

Kondic, L.

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

Kralj, S.

S. Kralj, S. Žumer, and D. Allender, “Nematic-isotropic phase transition in a liquid-crystal droplet,” Phys. Rev. A 43, 2943–2952 (1991).
[Crossref] [PubMed]

Lam, Y. C.

N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
[Crossref] [PubMed]

Lavrentovich, D.

V. G. Bondar, D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74, 60–67 (1992).

Lavrentovich, O. D.

Y. K. Kim, B. Senyuk, and O. D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. Commun. 3, 1133 (2012).
[Crossref] [PubMed]

Lim, W.

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

Lin, T.-S.

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

Low, C. L.

N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
[Crossref] [PubMed]

Lye, S. W.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Matham, M. V.

Miao, J.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Moraes, F.

B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
[Crossref]

Nguyen, N. T.

R. Ranjini, M. V. Matham, and N. T. Nguyen, “Conoscopic analysis of electric field driven planar aligned nematic liquid crystal,” Appl. Opt. 53, 2773–2776 (2014).
[Crossref] [PubMed]

N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
[Crossref] [PubMed]

Oliveira, J. C. R. E.

B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
[Crossref]

Oliveira, M. S. N.

P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
[Crossref]

Ouskova, E.

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

Pergamenshchik, V. M.

V. G. Bondar, D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74, 60–67 (1992).

Pinho, F. T.

P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
[Crossref]

Porter, D.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

Postma, A.

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

Priest, C.

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

Quake, S.

A. Groisman and S. Quake, “A microfluidic rectifier: Anisotropic flow resistance at low reynolds numbers,” Phys. Rev. Lett. 92, 094501 (2004).
[Crossref] [PubMed]

Quake, S. R.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[Crossref]

Quinn, A.

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

Quinn, J. F.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Ralston, J.

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

Ranjini, R.

Rolla, P. A.

S. Faetti, L. Fronzoni, and P. A. Rolla, “Static and dynamic behavior of the vortex-electrohydrodynamic instability in freely suspended layers of nematic liquid crystals,” J. Chem. Phys. 79, 5054 (1983).
[Crossref]

Savage, J. R.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

Schulz, B.

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

Sengupta, A.

A. Sengupta, “Tuning fluidic resistance via liquid crystal microfluidics,” Int. J. Mol. Sci. 14, 22826–22844 (2013).
[Crossref] [PubMed]

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,” Soft Matter 7, 6542 (2011).
[Crossref]

Senyuk, B.

Y. K. Kim, B. Senyuk, and O. D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. Commun. 3, 1133 (2012).
[Crossref] [PubMed]

Shojaei-Zadeh, S.

S. Shojaei-Zadeh and S. L. Anna, “Role of surface anchoring and geometric confinement on focal conic textures in smetic-a liquid crystal,” Langmuir 22, 9986–9993 (2006).
[Crossref] [PubMed]

Sousa, P. C.

P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
[Crossref]

Spicer, P.

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

Squires, T. M.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[Crossref]

Stewart, I.

I. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (CRC Press, 2004).

Sun, H.

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

Tang, L.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Tao, K.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Thiele, U.

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

Tian, Y.

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

Tjipto, E.

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Tkalec, U.

A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,” Soft Matter 7, 6542 (2011).
[Crossref]

Wang, R.

Y. Zhao, R. Wang, and C. Yang, “Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches,” Int. J. Heat Mass Transf. 108, 1048–1056 (2017).
[Crossref]

Wang, Y.

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Wang, Y. L.

Y. Huang, Y. L. Wang, and T. N. Wong, “Ac electric field controlled non-newtonian filament thinning and droplet formation on the microscale,” Lab Chip 17, 2969–2981 (2017).
[Crossref] [PubMed]

Wen, S.

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

Wereley, N.-T.

N.-T. Wereley, Fundamentals and applications of microfluidics (Artech House, 2002).

Whitesides, G.

K. S. Brittain, X.M. Zhao, and G. Whitesides, “Softlithography and microfabrication,” Phys. World 11, 31–36 (1998).
[Crossref]

Wong, T.

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

Wong, T. N.

Y. Huang, Y. L. Wang, and T. N. Wong, “Ac electric field controlled non-newtonian filament thinning and droplet formation on the microscale,” Lab Chip 17, 2969–2981 (2017).
[Crossref] [PubMed]

H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
[Crossref] [PubMed]

Wu, J.

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Xiao, L.

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Xiong, Y.

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

Yang, C.

Y. Zhao, R. Wang, and C. Yang, “Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches,” Int. J. Heat Mass Transf. 108, 1048–1056 (2017).
[Crossref]

Zelikin, A. N.

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

Zhao, X.M.

K. S. Brittain, X.M. Zhao, and G. Whitesides, “Softlithography and microfabrication,” Phys. World 11, 31–36 (1998).
[Crossref]

Zhao, Y.

Y. Zhao, R. Wang, and C. Yang, “Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches,” Int. J. Heat Mass Transf. 108, 1048–1056 (2017).
[Crossref]

Žumer, S.

S. Kralj, S. Žumer, and D. Allender, “Nematic-isotropic phase transition in a liquid-crystal droplet,” Phys. Rev. A 43, 2943–2952 (1991).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Sengupta, S. Herminghaus, and C. Bahr, “Opto-fluidic velocimetry using liquid crystal microfluidics,” Appl. Phys. Lett. 101, 164101 (2012).
[Crossref]

Biomicrofluidics (1)

N. T. Nguyen, Y. C. Lam, S. S. Ho, and C. L. Low, “Improvement of rectification effects in diffuser/nozzle structures with viscoelastic fluids,” Biomicrofluidics 2, 34101 (2008).
[Crossref] [PubMed]

Int. J. Heat Mass Transf. (1)

Y. Zhao, R. Wang, and C. Yang, “Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches,” Int. J. Heat Mass Transf. 108, 1048–1056 (2017).
[Crossref]

Int. J. Mol. Sci. (1)

A. Sengupta, “Tuning fluidic resistance via liquid crystal microfluidics,” Int. J. Mol. Sci. 14, 22826–22844 (2013).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Faetti, L. Fronzoni, and P. A. Rolla, “Static and dynamic behavior of the vortex-electrohydrodynamic instability in freely suspended layers of nematic liquid crystals,” J. Chem. Phys. 79, 5054 (1983).
[Crossref]

J. Mater. Sci. Chem. Eng. (1)

T. Bera and J. Fang, “Interaction of surfactants and polyelectrolyte-coated liquid crystal droplets,” J. Mater. Sci. Chem. Eng. 02, 1–7 (2014).

J. Non-Newtonian Fluid Mech. (1)

P. C. Sousa, F. T. Pinho, M. S. N. Oliveira, and M. A. Alves, “Efficient microfluidic rectifiers for viscoelastic fluid flow,” J. Non-Newtonian Fluid Mech. 165, 652–671 (2010).
[Crossref]

Journal of Microelectromechanical Systems (1)

K. Tao, L. Tang, J. Wu, S. W. Lye, H. Chang, and J. Miao, “Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity,” Journal of Microelectromechanical Systems PP, 1–13 (2018).
[Crossref]

Lab Chip (1)

Y. Huang, Y. L. Wang, and T. N. Wong, “Ac electric field controlled non-newtonian filament thinning and droplet formation on the microscale,” Lab Chip 17, 2969–2981 (2017).
[Crossref] [PubMed]

Lab. Chip (1)

C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, “Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis,” Lab. Chip 8, 2182–2187 (2008).
[Crossref] [PubMed]

Langmuir (1)

S. Shojaei-Zadeh and S. L. Anna, “Role of surface anchoring and geometric confinement on focal conic textures in smetic-a liquid crystal,” Langmuir 22, 9986–9993 (2006).
[Crossref] [PubMed]

Microfluid. Nanofluid. (1)

A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic devices for investigation of liquid crystal flows,” Microfluid. Nanofluid. 13, 941–955 (2012).
[Crossref]

Molec. Cryst. Liquid Cryst. Sci. Technol. (1)

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5cb,” Molec. Cryst. Liquid Cryst. Sci. Technol. 331, 49–57 (1999).
[Crossref]

Nano Lett. (1)

E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phase via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
[Crossref] [PubMed]

Nanoscale (1)

L. Xiao, Y. Wang, Y. Huang, T. Wong, and H. Sun, “Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation,” Nanoscale 9, 12637–12646 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. K. Kim, B. Senyuk, and O. D. Lavrentovich, “Molecular reorientation of a nematic liquid crystal by thermal expansion,” Nat. Commun. 3, 1133 (2012).
[Crossref] [PubMed]

Phys. Fluids (1)

T.-S. Lin, L. J. Cummings, A. J. Archer, L. Kondic, and U. Thiele, “Note on the hydrodynamic description of thin nematic films: Strong anchoring model,” Phys. Fluids 25, 082102 (2013).
[Crossref]

Phys. Rev. A (1)

S. Kralj, S. Žumer, and D. Allender, “Nematic-isotropic phase transition in a liquid-crystal droplet,” Phys. Rev. A 43, 2943–2952 (1991).
[Crossref] [PubMed]

Phys. Rev. E (3)

L. E. Aguirre, E. Anoardo, N. Éber, and A. Buka, “Regular structures in 5cb liquid crystals under the joint action of ac and dc voltages,” Phys. Rev. E 85, 041703 (2012).
[Crossref]

D. Porter, J. R. Savage, I. Cohen, P. Spicer, and M. Caggioni, “Temperature dependence of droplet breakup in 8cb and 5cb liquid crystals,” Phys. Rev. E 85, 041701 (2012).
[Crossref]

B. F. de Oliveira, P. P. Avelino, F. Moraes, and J. C. R. E. Oliveira, “Nematic liquid crystal dynamics under applied electric fields,” Phys. Rev. E 82, 041707 (2010).
[Crossref]

Phys. Rev. Lett. (1)

A. Groisman and S. Quake, “A microfluidic rectifier: Anisotropic flow resistance at low reynolds numbers,” Phys. Rev. Lett. 92, 094501 (2004).
[Crossref] [PubMed]

Phys. World (1)

K. S. Brittain, X.M. Zhao, and G. Whitesides, “Softlithography and microfabrication,” Phys. World 11, 31–36 (1998).
[Crossref]

Rev. Mod. Phys. (1)

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[Crossref]

Rheol. Acta (1)

X. Zhang, X. Zhang, Y. Xiong, Y. Tian, and S. Wen, “Anti-electroviscous effect of near-surface 5cb liquid crystal and its boundary lubrication property,” Rheol. Acta 51, 267–277 (2011).
[Crossref]

Small (1)

Y. Huang, L. Xiao, T. An, W. Lim, T. Wong, and H. Sun, “Fast dynamic visualizations in microfluidics enabled by fluorescent carbon nanodots,” Small 13, 1700869 (2017).
[Crossref]

Soft Matter (2)

H. Feng, Y. Huang, T. N. Wong, and F. Duan, “Electrolyte effect in induced charge electroosmosis,” Soft Matter 13, 4864–4870 (2017).
[Crossref] [PubMed]

A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,” Soft Matter 7, 6542 (2011).
[Crossref]

Sov. Phys. JETP (1)

V. G. Bondar, D. Lavrentovich, and V. M. Pergamenshchik, “Threshold of structural hedgehog-ring transition in drops of a nematic in an alternating electric field,” Sov. Phys. JETP 74, 60–67 (1992).

Other (2)

N.-T. Wereley, Fundamentals and applications of microfluidics (Artech House, 2002).

I. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (CRC Press, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for visualizing single phase liquid crystal flow in nozzle-diffuser microchannels.
Fig. 2
Fig. 2 Schematic diagrams for (a) flow field, (b) directional field of LC and (c) LC orientations under crossed polarizer-analyzer.
Fig. 3
Fig. 3 Fringe pattern characteristics along both diffuser and nozzle directions.
Fig. 4
Fig. 4 Fringe patterns of 15° opening angle microchannel along diffuser and nozzle directions.
Fig. 5
Fig. 5 Fringe patterns of 30° and 45° opening angle microchannels along both diffuser and nozzle directions. (a) Fringe patterns of 30° opening angle microchannel, (b) fringe patterns of 45° opening angle microchannel.
Fig. 6
Fig. 6 Applicable conditions for flow visualizations via 5CB polarization. (a) Representative fringe contours of various Reynolds numbers (15° opening angle), (b) variation in fringe densities as function of Re for various opening angles, (c) critical Er number for different opening angles.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

v i , i = 0
ρ v ˙ i = ρ F i ( p + w F ) , i + g ˜ j n j , i + G k n k , i + t ˜ i j , j
K n i , j j + g ˜ i + G i = λ n i
t ˜ i j = α 1 n k A k p n p n i n j + α 2 N i n j + α 3 n i N j + α 4 A i j + α 5 n j A i k n k + α 6 n i A j k n k
g ˜ i = γ 1 N i γ 2 A i p n p
χ * = χ χ Di 15 ° , 35 = N / S χ Di 15 ° , 35
Er = v μ L K

Metrics