Abstract

Evidence of water reflectance saturation in extremely turbid media is highlighted based on both field measurements and satellite data corrected for atmospheric effects. This saturation is obvious in visible spectral bands, i.e., in the blue, green and even red spectral regions when the concentration of suspended particulate matter (SPM) reaches then exceeds 100 to 1000 g.m−3. The validity of several bio-optical semi-analytical models is assessed in the case of highly turbid waters, based on comparisons with outputs of the Hydrolight radiative transfer model. The most suitable models allow to reproduce the observed saturation and, by inversion, to retrieve information on the SPM mass-specific inherent optical properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling

David Doxaran, Nagur Cherukuru, and Samantha J. Lavender
Appl. Opt. 45(10) 2310-2324 (2006)

Variability of apparent and inherent optical properties of sediment-laden waters in large river basins – lessons from in situ measurements and bio-optical modeling

Sylvain Pinet, Jean-Michel Martinez, Sylvain Ouillon, Bruno Lartiges, and Raul Espinoza Villar
Opt. Express 25(8) A283-A310 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
    [Crossref]
  2. B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
    [Crossref]
  3. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  4. R. Doerffer and H. Schiller, “The MERIS Case 2 water algorithm,” Int. J. Remote Sens. 28(3–4), 517–535 (2007).
    [Crossref]
  5. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  6. Z. Lee, K. L. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43(25), 4957–4964 (2004).
    [Crossref] [PubMed]
  7. Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
    [Crossref] [PubMed]
  8. P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Zeritschrift fr. Tech. Phys. 12, 593–601 (1931).
  9. F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
    [Crossref]
  10. F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
    [Crossref]
  11. M. S. Salama and W. Verhoef, “Two-stream remote sensing model for water quality mapping: 2SeaColor,” Remote Sens. Environ. 157, 111–122 (2015).
    [Crossref]
  12. E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
    [Crossref]
  13. S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
    [Crossref]
  14. W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
    [Crossref]
  15. K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [Crossref]
  16. T. Leeuw and E. Boss, “The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera,” Sensors (Basel) 18(1), 256 (2018).
    [Crossref] [PubMed]
  17. D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
    [Crossref]
  18. Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
    [Crossref]
  19. Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
    [Crossref]
  20. L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
    [Crossref]
  21. Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
    [Crossref]
  22. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [Crossref] [PubMed]
  23. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  24. A. Morel and R. C. Smith, “Relation between total quanta and total energy for aquatic photosynthesis,” Limnol. Oceanogr. 19(4), 591–600 (1974).
    [Crossref]
  25. A. Morel, “Optical properties of pure water and pure sea water,” Opt. Aspects Oceanography 1, 1–24 (1974).
  26. Z. Lee, J. Wei, K. Voss, M. Lewis, A. Bricaud, and Y. Huot, “Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance,” Appl. Opt. 54(3), 546–558 (2015).
    [Crossref]
  27. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
    [Crossref]
  28. D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45(10), 2310–2324 (2006).
    [Crossref] [PubMed]
  29. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible imagery: A Review (Springer Science & Business Media, 1983), Vol. 4.
  30. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  31. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
    [Crossref]
  32. D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
    [Crossref]
  33. G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
    [Crossref]
  34. D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
    [Crossref]
  35. R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
    [Crossref]
  36. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
    [Crossref]
  37. D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
    [Crossref] [PubMed]
  38. D. Bowers, G. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17(12), 2449–2460 (1996).
    [Crossref]
  39. D. Bowers and C. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1), 219–230 (2006).
    [Crossref]
  40. C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35(7), 1486–1502 (1990).
    [Crossref]
  41. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
    [Crossref] [PubMed]
  42. H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2–3), 275–295 (2001).
    [Crossref]
  43. W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka-Munk theory,” Appl. Opt. 36(22), 5580–5586 (1997).
    [Crossref] [PubMed]
  44. C. Sandoval and A. D. Kim, “Deriving Kubelka-Munk theory from radiative transport,” J. Opt. Soc. Am. A 31(3), 628–636 (2014).
    [Crossref] [PubMed]
  45. B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIE Europe Remote Sensing, (International Society for Optics and Photonics, 2009), 74730H.
  46. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
    [Crossref] [PubMed]
  47. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [Crossref] [PubMed]
  48. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009).
    [Crossref] [PubMed]
  49. E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
    [Crossref] [PubMed]
  50. D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
    [Crossref] [PubMed]

2018 (1)

T. Leeuw and E. Boss, “The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera,” Sensors (Basel) 18(1), 256 (2018).
[Crossref] [PubMed]

2017 (2)

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

2016 (4)

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
[Crossref]

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
[Crossref] [PubMed]

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

2015 (4)

M. S. Salama and W. Verhoef, “Two-stream remote sensing model for water quality mapping: 2SeaColor,” Remote Sens. Environ. 157, 111–122 (2015).
[Crossref]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

Z. Lee, J. Wei, K. Voss, M. Lewis, A. Bricaud, and Y. Huot, “Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance,” Appl. Opt. 54(3), 546–558 (2015).
[Crossref]

2014 (3)

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[Crossref]

C. Sandoval and A. D. Kim, “Deriving Kubelka-Munk theory from radiative transport,” J. Opt. Soc. Am. A 31(3), 628–636 (2014).
[Crossref] [PubMed]

2013 (1)

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

2012 (2)

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

2010 (3)

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

2009 (2)

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009).
[Crossref] [PubMed]

D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
[Crossref]

2007 (2)

R. Doerffer and H. Schiller, “The MERIS Case 2 water algorithm,” Int. J. Remote Sens. 28(3–4), 517–535 (2007).
[Crossref]

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
[Crossref] [PubMed]

2006 (3)

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45(10), 2310–2324 (2006).
[Crossref] [PubMed]

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

D. Bowers and C. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1), 219–230 (2006).
[Crossref]

2004 (3)

Z. Lee, K. L. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43(25), 4957–4964 (2004).
[Crossref] [PubMed]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[Crossref]

2003 (2)

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

2002 (2)

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

2001 (1)

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2–3), 275–295 (2001).
[Crossref]

1999 (2)

1997 (2)

1996 (2)

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

D. Bowers, G. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17(12), 2449–2460 (1996).
[Crossref]

1993 (1)

1990 (1)

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35(7), 1486–1502 (1990).
[Crossref]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

1974 (2)

A. Morel and R. C. Smith, “Relation between total quanta and total energy for aquatic photosynthesis,” Limnol. Oceanogr. 19(4), 591–600 (1974).
[Crossref]

A. Morel, “Optical properties of pure water and pure sea water,” Opt. Aspects Oceanography 1, 1–24 (1974).

1931 (1)

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Zeritschrift fr. Tech. Phys. 12, 593–601 (1931).

Arnone, R. A.

Astoreca, R.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

Babin, M.

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
[Crossref]

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
[Crossref] [PubMed]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Bauer, M. E.

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
[Crossref]

Behrenfeld, M.

Binding, C.

D. Bowers and C. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1), 219–230 (2006).
[Crossref]

Boss, E.

T. Leeuw and E. Boss, “The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera,” Sensors (Basel) 18(1), 256 (2018).
[Crossref] [PubMed]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009).
[Crossref] [PubMed]

Bowers, D.

D. Bowers and C. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1), 219–230 (2006).
[Crossref]

D. Bowers, G. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17(12), 2449–2460 (1996).
[Crossref]

Brezonik, P. L.

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
[Crossref]

Bricaud, A.

Z. Lee, J. Wei, K. Voss, M. Lewis, A. Bricaud, and Y. Huot, “Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance,” Appl. Opt. 54(3), 546–558 (2015).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Carder, K. L.

Castaing, P.

D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
[Crossref]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Chen, J.

Cherukuru, N.

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Correll, D. L.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35(7), 1486–1502 (1990).
[Crossref]

Dall’Olmo, G.

De Cauwer, V.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Doerffer, R.

R. Doerffer and H. Schiller, “The MERIS Case 2 water algorithm,” Int. J. Remote Sens. 28(3–4), 517–535 (2007).
[Crossref]

Dogliotti, A.

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Doxaran, D.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
[Crossref] [PubMed]

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
[Crossref]

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15(20), 12834–12849 (2007).
[Crossref] [PubMed]

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45(10), 2310–2324 (2006).
[Crossref] [PubMed]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Du, K.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Finlay, J. C.

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
[Crossref]

Flatau, P. J.

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[Crossref]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

Froidefond, J.-M.

D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
[Crossref]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Fry, E. S.

Gallegos, C. L.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35(7), 1486–1502 (1990).
[Crossref]

Gentili, B.

Gernez, P.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Harker, G.

D. Bowers, G. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17(12), 2449–2460 (1996).
[Crossref]

He, Q.

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

He, Y.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Hu, C.

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Huot, Y.

Kim, A. D.

Knaeps, E.

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Kubelka, P.

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Zeritschrift fr. Tech. Phys. 12, 593–601 (1931).

Lafon, V.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Lancelot, C.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

Lavender, S.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Lavender, S. J.

Lee, Z.

Leeuw, T.

T. Leeuw and E. Boss, “The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera,” Sensors (Basel) 18(1), 256 (2018).
[Crossref] [PubMed]

Lewis, M.

Leymarie, E.

Li, J.

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

Lin, G.

Liu, X.

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

Loisel, H.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2–3), 275–295 (2001).
[Crossref]

Lubac, B.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

McKee, D.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Mériaux, X.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Mobley, C. D.

Moore, G.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2–3), 275–295 (2001).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
[Crossref] [PubMed]

A. Morel, “Optical properties of pure water and pure sea water,” Opt. Aspects Oceanography 1, 1–24 (1974).

A. Morel and R. C. Smith, “Relation between total quanta and total energy for aquatic photosynthesis,” Limnol. Oceanogr. 19(4), 591–600 (1974).
[Crossref]

Munk, F.

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Zeritschrift fr. Tech. Phys. 12, 593–601 (1931).

Nechad, B.

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

Neukermans, G.

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

Niklasson, G. A.

Novoa, S.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Ody, A.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Olmanson, L. G.

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
[Crossref]

Park, Y.

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

Park, Y. J.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Patch, J. S.

Peng, T.

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Perrie, W.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Pierce, J. W.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35(7), 1486–1502 (1990).
[Crossref]

Pope, R. M.

Qiu, Z.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Raymaekers, D.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Rousseau, V.

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

Ruddick, K.

D. Doxaran, E. Leymarie, B. Nechad, A. Dogliotti, K. Ruddick, P. Gernez, and E. Knaeps, “Improved correction methods for field measurements of particulate light backscattering in turbid waters,” Opt. Express 24(4), 3615–3637 (2016).
[Crossref] [PubMed]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

Ruddick, K. G.

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Salama, M. S.

M. S. Salama and W. Verhoef, “Two-stream remote sensing model for water quality mapping: 2SeaColor,” Remote Sens. Environ. 157, 111–122 (2015).
[Crossref]

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

Sandoval, C.

Schiller, H.

R. Doerffer and H. Schiller, “The MERIS Case 2 water algorithm,” Int. J. Remote Sens. 28(3–4), 517–535 (2007).
[Crossref]

Shang, S.

Shen, F.

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

Shen, H.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Shi, W.

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[Crossref]

Slade, W. H.

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

A. Morel and R. C. Smith, “Relation between total quanta and total energy for aquatic photosynthesis,” Limnol. Oceanogr. 19(4), 591–600 (1974).
[Crossref]

Stephan, B.

D. Bowers, G. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17(12), 2449–2460 (1996).
[Crossref]

Sterckx, S.

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Steward, R. G.

Stramski, D.

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Sun, D.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Vanhellemont, Q.

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

Vargas, W. E.

Verhoef, W.

M. S. Salama and W. Verhoef, “Two-stream remote sensing model for water quality mapping: 2SeaColor,” Remote Sens. Environ. 157, 111–122 (2015).
[Crossref]

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

Voss, K.

Wang, L.

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Wang, M.

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[Crossref]

Wang, S.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Wei, J.

Wozniak, S. B.

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[Crossref]

Xiao, C.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Yang, D.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

Zheng, L.

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

Zhou, Y.

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

Appl. Opt. (12)

Z. Lee, K. L. Carder, and K. Du, “Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance,” Appl. Opt. 43(25), 4957–4964 (2004).
[Crossref] [PubMed]

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
[Crossref] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

Z. Lee, J. Wei, K. Voss, M. Lewis, A. Bricaud, and Y. Huot, “Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance,” Appl. Opt. 54(3), 546–558 (2015).
[Crossref]

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45(10), 2310–2324 (2006).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[Crossref] [PubMed]

W. E. Vargas and G. A. Niklasson, “Applicability conditions of the Kubelka-Munk theory,” Appl. Opt. 36(22), 5580–5586 (1997).
[Crossref] [PubMed]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32(33), 6864–6879 (1993).
[Crossref] [PubMed]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49(28), 5415–5436 (2010).
[Crossref] [PubMed]

Cont. Shelf Res. (2)

R. Astoreca, D. Doxaran, K. Ruddick, V. Rousseau, and C. Lancelot, “Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea,” Cont. Shelf Res. 35, 117–128 (2012).
[Crossref]

F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).
[Crossref]

Estuar. Coast. Shelf Sci. (2)

D. Doxaran, J.-M. Froidefond, P. Castaing, and M. Babin, “Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data,” Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).
[Crossref]

D. Bowers and C. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuar. Coast. Shelf Sci. 67(1), 219–230 (2006).
[Crossref]

Estuaries Coasts (1)

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts 33(6), 1420–1429 (2010).
[Crossref]

Int. J. Remote Sens. (3)

R. Doerffer and H. Schiller, “The MERIS Case 2 water algorithm,” Int. J. Remote Sens. 28(3–4), 517–535 (2007).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2–3), 275–295 (2001).
[Crossref]

D. Bowers, G. Harker, and B. Stephan, “Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll,” Int. J. Remote Sens. 17(12), 2449–2460 (1996).
[Crossref]

J. Geophys. Res. (2)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

J. Geophys. Res. Oceans (2)

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122(1), 276–290 (2017).
[Crossref]

D. Sun, Z. Qiu, C. Hu, S. Wang, L. Wang, L. Zheng, T. Peng, and Y. He, “A hybrid method to estimate suspended particle sizes from satellite measurements over Bohai Sea and Yellow Sea,” J. Geophys. Res. Oceans 121(9), 6742–6761 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Limnol. Oceanogr. (8)

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35(7), 1486–1502 (1990).
[Crossref]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48(2), 843–859 (2003).
[Crossref]

D. Stramski, S. B. Woźniak, and P. J. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49(3), 749–755 (2004).
[Crossref]

G. Neukermans, H. Loisel, X. Mériaux, R. Astoreca, and D. McKee, “In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition,” Limnol. Oceanogr. 57(1), 124–144 (2012).
[Crossref]

A. Morel and R. C. Smith, “Relation between total quanta and total energy for aquatic photosynthesis,” Limnol. Oceanogr. 19(4), 591–600 (1974).
[Crossref]

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[Crossref]

K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Opt. Aspects Oceanography (1)

A. Morel, “Optical properties of pure water and pure sea water,” Opt. Aspects Oceanography 1, 1–24 (1974).

Opt. Express (3)

Remote Sens. (1)

S. Novoa, D. Doxaran, A. Ody, Q. Vanhellemont, V. Lafon, B. Lubac, and P. Gernez, “Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters,” Remote Sens. 9(1), 61 (2017).
[Crossref]

Remote Sens. Environ. (7)

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).
[Crossref]

Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).
[Crossref]

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, “Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes,” Remote Sens. Environ. 185, 119–128 (2016).
[Crossref]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010).
[Crossref]

M. S. Salama and W. Verhoef, “Two-stream remote sensing model for water quality mapping: 2SeaColor,” Remote Sens. Environ. 157, 111–122 (2015).
[Crossref]

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).
[Crossref]

Sensors (Basel) (1)

T. Leeuw and E. Boss, “The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera,” Sensors (Basel) 18(1), 256 (2018).
[Crossref] [PubMed]

Zeritschrift fr. Tech. Phys. (1)

P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Zeritschrift fr. Tech. Phys. 12, 593–601 (1931).

Other (3)

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible imagery: A Review (Springer Science & Business Media, 1983), Vol. 4.

B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIE Europe Remote Sensing, (International Society for Optics and Photonics, 2009), 74730H.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Selected water-leaving reflectance spectra (ρw) for increasing SPM concentration (g.m−3) based on field measurements in the Gironde Estuary. Background figure was reproduced from Novoa et al. (2017) [13]. Dashed lines are the wavebands of the satellite sensor selected in this study.
Fig. 2
Fig. 2 Maps of the three test sites produced based on L8/OLI satellite data (top of the atmosphere quasi-true color images): (a) the Yellow River Estuary (YRE, 27 October 2015), (b) the Subei Shallow Bank (SSB, 8 March 2017) and (c) the Gironde Estuary (GRE, 22 February 2015). The yellow polygons delimit the areas of interest.
Fig. 3
Fig. 3 Rrs at 443, 483, 561 and 655 nm as a function of increasing (a) SPM concentration and (b) Rrs at 865 nm based on field measurements carried out in the Gironde Estuary (GRE) in 2013. The dashed lines are the best-fitted Nechad-type relationships (Eq. (10)) highlighting the progressive saturation of Rrs.
Fig. 4
Fig. 4 L8/OLI-derived Rrs at 443, 483, 561 and 655 nm as a function of Rrs at 865 nm in the YRE (27 October 2015, image processed using the ACOLITE software applying the SWIR atmospheric correction). The yellow dashed lines represent the best-fitted Nechad-type relationships (Eq. (10)).
Fig. 5
Fig. 5 Same as Fig. 4 in the SSB (8 March 2017 L8/OLI image).
Fig. 6
Fig. 6 Same as Fig. 4 in the GRE (22 February 2015 L8/OLI image).
Fig. 7
Fig. 7 Average saturated Rrs values (sr−1) observed in the three test sites on different L8/OLI images: YRE, SSB, GRE (7, 6 and 6 images, respectively). Vertical lines show the standard deviations (SD).
Fig. 8
Fig. 8 Comparisons between rrs values simulated at 443, 483, 561, 655 and 865 nm using different semi-analytical bio-optical models and rrs values computed with Hydrolight, using the exact same IOPs as inputs. Black dots show the 1:1 lines.

Tables (3)

Tables Icon

Table 1 Inputs in Hydrolight simulations.

Tables Icon

Table 2 Saturated Rrs values (sr−1) observed in the three test sites on different L8/OLI images. Site-by-site average values and standard deviations (SD).

Tables Icon

Table 3 Retrieved bbp*(λi)/ap*(λi) values in the three test sites using the three different models.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Rrs(θ,ϕ,λ)=Lw(θ,ϕ,λ)/Ed(λ).
ρw=π×Rrs.
a= a w +SPM× a p ,
b b = b bw +SPM× b bp ,
a p ( λ )= a p ( 443 )×exp( s×( λ443 ) ),
b bp ( λ )= b bp ( 555 )× ( λ/555 ) γ ,
rrs= i=1 2 li ( bb a+bb ) i
G= G 0 b bw b bw + b bp + G 1 ( 1 G 2 exp( G 3 b bp a+ b b ) ) b bp b bw + b bp ,
rrs=G bb a+bb
R= bb bb+a+ a( 2bb+a ) = bb/a 1+bb/a+ 1+2bb/a ,
rrs=R/Q.
Rrs= X Aρ+X/Cρ
RMSE= 1 n i=1 n ( X i Y i ) 2 .
R rs * (λi)=C(λi)0.529×[0.0949×X(λi)+0.0794×X (λi) 2 ]
G0+ G 1 ( 1 G 2 exp( G 3 b bp * (λi) a p * (λi)+ b bp * (λi) ) ),
R rs * (λi)=C(λi)0.529×0.197×[10.636exp(2.552×X(λi))]×X(λi).
R rs * (λi)=C(λi)0.529/3.6×Y(λi)/[1+Y(λi)+ (1+2×Y(λi)) 1/2 ].

Metrics