Abstract

We demonstrate an all-fiber 7 × 1 signal combiner with an output core diameter of 50 μm for high power incoherent beam combining of seven self-made Yb-doped single-mode fiber lasers around a wavelength of 1080 nm and output power of 2 kW. 14.1 kW combined output power is achieved with a total transmission efficiency of higher than 98.5% and a beam quality of M2 = 5.37, which is close to the theoretical results based on finite-difference beam propagation technique. To the best of our knowledge, this is the highest output power ever reported for all-fiber structure beam combining generation, which indicates the feasibility and potential of >10 kW high brightness incoherent beam combining based on an all-fiber signal combiner.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters

Fan Chen, Jun Ma, Cong Wei, Rihong Zhu, Wenchao Zhou, Qun Yuan, Shaohua Pan, JianYun Zhang, Yize Wen, and Jiantai Dou
Opt. Express 25(26) 32783-32791 (2017)

790  W incoherent beam combination of a Tm-doped fiber laser at 1941  nm using a 3 × 1 signal combiner

Weichao Yao, Chongfeng Shen, Zhenhua Shao, Jianlei Wang, Fei Wang, Yongguang Zhao, and Deyuan Shen
Appl. Opt. 57(20) 5574-5577 (2018)

1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks

Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse
Opt. Express 20(3) 3296-3301 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. Alam, “Fiber lasers and their applications: introduction,” J. Opt. Soc. Am. B 34(3), A1 (2017).
    [Crossref]
  2. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  4. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum electron. 20(5), 1–23 (2014).
    [Crossref]
  5. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
    [Crossref]
  6. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  7. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  8. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express 20(22), 24545–24558 (2012).
    [Crossref] [PubMed]
  9. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011).
    [Crossref] [PubMed]
  10. H. Liu, B. He, J. Zhou, J. Dong, Y. Wei, and Q. Lou, “Coherent beam combination of two nanosecond fiber amplifiers by an all-optical feedback loop,” Opt. Lett. 37(18), 3885–3887 (2012).
    [Crossref] [PubMed]
  11. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
    [Crossref] [PubMed]
  12. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
    [Crossref] [PubMed]
  13. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
    [Crossref] [PubMed]
  14. F. Chen, J. Ma, C. Wei, R. Zhu, W. Zhou, Q. Yuan, S. Pan, J. Zhang, Y. Wen, and J. Dou, “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters,” Opt. Express 25(26), 32783–32791 (2017).
    [Crossref]
  15. M. H. Rasmussen, “Fiber bundles and methods of making fiber bundles,” U.S. patent 7236671 (2007).
  16. D. J. Digiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” U.S. patent 5864644A (1999).
  17. Y. Shamir and Y. Sintov, “All-fiber low mode beam combiner for high power and high beam quality,” U.S. patent 20120281948 A1 (2012).
  18. Y. Shamir, Y. Sintov, and M. Shtaif, “Large-mode-area fused-fiber combiners, with nearly lowest-mode brightness conservation,” Opt. Lett. 36(15), 2874–2876 (2011).
    [Crossref] [PubMed]
  19. M. Shtaif, Y. Shamir, and Y. Sintov, “Beam quality analysis and optimization in an adiabatic low mode tapered fiber beam combiner,” J. Opt. Soc. Am. B 27(12), 2669–2676 (2010).
    [Crossref]
  20. D. Noordegraaf, P. M. W. Skovgaard, F. Becker, M. Blomqvist, and J. Laegsgaard, “All-fiber 7x1 signal combiner for incoherent laser beam combining,” Proc. SPIE - The International Society for Optical Engineering 7914, 395–410 (2011).
    [Crossref]
  21. D. Yan, C. Li, L. Li, and X. Liu, “4kW continue wavelength fiber laser with all fiber 4x1 signal combiner,” in Laser and Tera-Hertz Science and Technology (2012).
  22. T. Eschrich, D. Hoh, F. Just, J. Kobelke, S. Unger, M. Jäger, and H. Bartelt, “Incoherent beam combining of 5.1kW using a 7x1 signal combiner into a 50μm core output fiber,” in Advanced Photonics, OSA Congress(2014).
    [Crossref]
  23. M. Jager, M. Plotner, T. Eschrich, O. de Vries, J. Kobelke, T. Schreiber, S. Unger, R. Eberhardt, H. Bartelt, and A. Tunnermann, “High-Brightness Incoherent Combination of Fiber Lasers in 7 × 1 Fiber Couplers at Average Powers > 5 kW,” J. Lightwave Technol. 33(20), 4297–4302 (2015).
    [Crossref]
  24. X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
    [Crossref]
  25. X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
    [Crossref]
  26. H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).
  27. H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
    [Crossref] [PubMed]

2017 (3)

2016 (3)

Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
[Crossref] [PubMed]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

2015 (3)

2014 (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum electron. 20(5), 1–23 (2014).
[Crossref]

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (2)

2011 (4)

2010 (2)

2009 (1)

2008 (1)

Alam, S.

Amezcua, R.

Augst, S. J.

Bartelt, H.

Barty, C. P. J.

Beach, R. J.

Chen, F.

Chen, J.

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
[Crossref] [PubMed]

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).

Chen, X.

Chen, Z.

P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
[Crossref] [PubMed]

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum electron. 20(5), 1–23 (2014).
[Crossref]

Dawson, J. W.

de Vries, O.

Dong, J.

Dou, J.

Eberhardt, R.

Eschrich, T.

Fan, T. Y.

Goldizen, K. C.

Gowin, M.

He, B.

Heebner, J. E.

Hou, J.

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
[Crossref] [PubMed]

Hu, M.

Jager, M.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jung, M.

Kobelke, J.

Leng, J.

Limpert, J.

Liu, G.

Liu, H.

Liu, K.

Liu, Z.

Lou, Q.

Ludewigt, K.

Ma, H.

Ma, J.

Ma, Y.

Messerly, M. J.

Murphy, D. V.

Nilsson, J.

Pan, S.

Pax, P. H.

Plotner, M.

Redmond, S. M.

Richardson, D. J.

Sanchez, A.

Schmidt, O.

Schreiber, T.

Schulzgen, A.

Shamir, Y.

Shi, W.

Shtaif, M.

Shverdin, M. Y.

Siders, C. W.

Sintov, Y.

Smith, A. V.

Smith, J. J.

Sridharan, A. K.

Stappaerts, E. A.

ten Have, E.

Tsybin, I.

Tunnermann, A.

Tünnermann, A.

Unger, S.

Wang, J.

Wang, X.

Wang, Z.

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

Wei, C.

Wei, Y.

Wen, Y.

Wirth, C.

Xiao, H.

Xu, J.

Xu, X.

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

Yang, Y.

Yu, C. X.

Yuan, Q.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum electron. 20(5), 1–23 (2014).
[Crossref]

Zhang, H.

Zhang, J.

Zhao, C.

Zhao, X.

Zheng, Y.

Zhou, H.

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
[Crossref] [PubMed]

Zhou, J.

Zhou, P.

Zhou, W.

Zhou, X.

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
[Crossref] [PubMed]

Zhu, R.

Zhu, X.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers,” Chin. Opt. Lett. 13(6), 65–68 (2015).

IEEE J. Sel. Top. Quantum electron. (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum electron. 20(5), 1–23 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “Beam Quality Analysis of Incoherent Beam Combining by a 7×1 All-Fiber Signal Combiner,” IEEE Photonics Technol. Lett. 28(20), 2265–2268 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Eng. (1)

X. Zhou, Z. Chen, Z. Wang, J. Hou, and X. Xu, “High power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner,” Opt. Eng. 55(5), 056103 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Other (6)

M. H. Rasmussen, “Fiber bundles and methods of making fiber bundles,” U.S. patent 7236671 (2007).

D. J. Digiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” U.S. patent 5864644A (1999).

Y. Shamir and Y. Sintov, “All-fiber low mode beam combiner for high power and high beam quality,” U.S. patent 20120281948 A1 (2012).

D. Noordegraaf, P. M. W. Skovgaard, F. Becker, M. Blomqvist, and J. Laegsgaard, “All-fiber 7x1 signal combiner for incoherent laser beam combining,” Proc. SPIE - The International Society for Optical Engineering 7914, 395–410 (2011).
[Crossref]

D. Yan, C. Li, L. Li, and X. Liu, “4kW continue wavelength fiber laser with all fiber 4x1 signal combiner,” in Laser and Tera-Hertz Science and Technology (2012).

T. Eschrich, D. Hoh, F. Just, J. Kobelke, S. Unger, M. Jäger, and H. Bartelt, “Incoherent beam combining of 5.1kW using a 7x1 signal combiner into a 50μm core output fiber,” in Advanced Photonics, OSA Congress(2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the signal combiner; (b) Input and (c) output cross-section of the fiber bundle. The longitudinal position A and B correspond to (b) and (c) respectively.
Fig. 2
Fig. 2 Calculated transverse field intensity profile at different longitudinal positon, including the input (top left, corresponding to A in Fig. 1(a)), the end of fiber bundle (top right, corresponding to B in Fig. 1(a)), the output of the delivery fiber (bottom left, corresponding to C in Fig. 1(a)) as well as the far field intensity profile (bottom right).
Fig. 3
Fig. 3 Cross section of the end-facet of the tapered fiber bundle (left) and the side view of the splice between the tapered bundle and the output fiber (right).
Fig. 4
Fig. 4 Experimental setup of the high power incoherent beam combining.
Fig. 5
Fig. 5 Heat performance of the combiner: (a) The highest working temperature on the combiner versus transmitted power. (b) Thermal image of the combiner, showing a maximum temperature of 66.1°C at an output power of 14.1 kW. The top subgraph illustrates the temperature distribution along the longitudinal direction and the bottom shows the visible image taken by the thermal imager.
Fig. 6
Fig. 6 (a) Experimental configuration of beam quality analysis. HR, high reflectivity mirror (b) the results of measured M2 at an output power of 14 kW (subgraphs show the intensity profile at the waist).

Tables (1)

Tables Icon

Table 1 Signal transmission efficiency of each port of the combiner

Metrics