Abstract

We experimentally demonstrate a CMOS compatible medium wave infrared metal-insulator-metal (MIM) metamaterial absorber structure where for a single dielectric spacer thickness at least 93% absorption is attained for 10 separate bands centred at 3.08, 3.30, 3.53, 3.78, 4.14, 4.40, 4.72, 4.94, 5.33, 5.60 μm. Previous hyperspectral MIM metamaterial absorber designs required that the thickness of the dielectric spacer layer be adjusted in order to attain selective unity absorption across the band of interest thereby increasing complexity and cost. We show that the absorption characteristics of the hyperspectral metamaterial structures are polarization insensitive and invariant for oblique incident angles up to 25° making them suitable for practical implementation in an imaging system. Finally, we also reveal that under TM illumination and at certain oblique incident angles there is an extremely narrowband Fano resonance (Q > 50) between the MIM absorber mode and the surface plasmon polariton mode that could have applications in hazardous/toxic gas identification and biosensing.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber

James Grant, Iain J. H. McCrindle, and David R. S. Cumming
Opt. Express 24(4) 3451-3463 (2016)

CMOS-compatible mid-IR metamaterial absorbers for out-of-band suppression in optical MEMS

Mohammadamir Ghaderi, Ehsan Karimi Shahmarvandi, and Reinoud F. Wolffenbuttel
Opt. Mater. Express 8(7) 1696-1707 (2018)

Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons

Junyu Li, Rulei Gan, Qiushi Guo, Huan Liu, Jianfeng Xu, and Fei Yi
Opt. Express 26(13) 16769-16781 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
    [Crossref] [PubMed]
  2. C.-C. Chen Attenuation of Electromagnetic Radiation by Haze, Fog, Clouds, and Rain," (1975).
  3. C. Xie, M. Aziz, V. Pusino, A. Khalid, M. Steer, I. G. Thayne, M. Sorel, and D. R. S. Cumming, “Single-chip, mid-infrared array for room temperature video rate imaging,” Optica 4(12), 1498 (2017).
    [Crossref]
  4. D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors 13(6), 7079–7103 (2013).
    [Crossref] [PubMed]
  5. A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer London, 2006).
  6. VISIMID GigE PoE Broadband Camera Specifications (2018).
  7. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
    [Crossref] [PubMed]
  8. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
    [Crossref]
  9. I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
    [Crossref] [PubMed]
  10. Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).
  11. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  12. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  14. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  15. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  16. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
    [Crossref] [PubMed]
  17. J. Grant, I. J. McCrindle, C. Li, and D. R. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
    [Crossref] [PubMed]
  18. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  19. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
  20. J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
    [Crossref]
  21. S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
    [Crossref] [PubMed]
  22. Q. Chen, F. Sun, and S. Song, “Subcell misalignment in vertically cascaded metamaterial absorbers,” Opt. Express 21(13), 15896–15903 (2013).
    [Crossref] [PubMed]
  23. X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
    [Crossref]
  24. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  25. G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 1–7 (2013).
  26. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  27. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  28. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276 (2017).
    [Crossref]
  29. J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
    [Crossref]
  30. D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
    [Crossref] [PubMed]
  31. F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
    [Crossref]
  32. S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” in TRANSDUCERS 2017 - 19th Int. Conf. Solid-State Sensors, Actuators Microsystems (2017), pp. 886–889.
    [Crossref]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science & Tech, 1985).
  34. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  35. W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).
  36. S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).
  37. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  38. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  39. I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
    [Crossref]
  40. I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
    [Crossref]
  41. J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
    [Crossref] [PubMed]

2017 (3)

C. Xie, M. Aziz, V. Pusino, A. Khalid, M. Steer, I. G. Thayne, M. Sorel, and D. R. S. Cumming, “Single-chip, mid-infrared array for room temperature video rate imaging,” Optica 4(12), 1498 (2017).
[Crossref]

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276 (2017).
[Crossref]

2016 (4)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

2015 (4)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

2014 (3)

I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

J. Grant, I. J. McCrindle, C. Li, and D. R. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

2013 (6)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Q. Chen, F. Sun, and S. Song, “Subcell misalignment in vertically cascaded metamaterial absorbers,” Opt. Express 21(13), 15896–15903 (2013).
[Crossref] [PubMed]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 1–7 (2013).

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

2012 (6)

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

2011 (3)

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

2010 (2)

2009 (1)

2008 (2)

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Aleksandrova, A.

Anantha Ramakrishna, S.

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 1–7 (2013).

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Atwater, H. A.

Aziz, M.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bingham, C.

Bozhevolnyi, S. I.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Brückl, H.

Brueckl, H.

Bulnes, F. G.

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Chashnikova, M.

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Chen, Q.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Q. Chen, F. Sun, and S. Song, “Subcell misalignment in vertically cascaded metamaterial absorbers,” Opt. Express 21(13), 15896–15903 (2013).
[Crossref] [PubMed]

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Choi, D.-G.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Choi, J.-H.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Cumming, D. R.

Cumming, D. R. S.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

C. Xie, M. Aziz, V. Pusino, A. Khalid, M. Steer, I. G. Thayne, M. Sorel, and D. R. S. Cumming, “Single-chip, mid-infrared array for room temperature video rate imaging,” Optica 4(12), 1498 (2017).
[Crossref]

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

Dao, T. D.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Dayal, G.

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 1–7 (2013).

Drysdale, T. D.

I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

Escorcia-Carranza, I.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Fan, K.

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fedosenko, O.

Fischbach, S.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
[Crossref]

Flores, Y.

Gansel, J. K.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
[Crossref]

Gibson, D.

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

Gong, B. Y.

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

Gough, J.

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Gouveia, L. C. P.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Grant, J.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

J. Grant, I. J. McCrindle, C. Li, and D. R. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

Grant, J. P.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Gruska, B.

Guerediaga, J.

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Hao, D.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

He, S. L.

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hu, X.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Ishii, S.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Jeong, J.-H.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Jin, L.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Jin, Y.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Jung, J.-Y.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Kenney, M.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

Khalid, A.

Kischkat, J.

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Klinkmüller, M.

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, E.-S.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Lee, J.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Lezec, H. J.

Li, C.

J. Grant, I. J. McCrindle, C. Li, and D. R. Cumming, “Multispectral metamaterial absorber,” Opt. Lett. 39(5), 1227–1230 (2014).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Liu, L. H.

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Lok, L. B.

Ma, Y.

MacGregor, C.

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

Machulik, S.

Maier, T.

Masselink, W. T.

McCrindle, I. J.

McCrindle, I. J. H.

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters,” Opt. Express 21(16), 19142–19152 (2013).
[Crossref] [PubMed]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Molleda, J.

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Monastyrskyi, G.

Montoya, J.

Mortensen, N. A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nagao, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Neikirk, D. P.

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

Niesler, F. B. P.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Pacifici, D.

Padilla, W. J.

J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, and W. J. Padilla, “Multifunctional metamaterial pyroelectric infrared detectors,” Optica 4(2), 276 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Peters, S.

Pusino, V.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

C. Xie, M. Aziz, V. Pusino, A. Khalid, M. Steer, I. G. Thayne, M. Sorel, and D. R. S. Cumming, “Single-chip, mid-infrared array for room temperature video rate imaging,” Optica 4(12), 1498 (2017).
[Crossref]

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Semtsiv, M.

Shah, Y. D.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

Shrekenhamer, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, S.

Q. Chen, F. Sun, and S. Song, “Subcell misalignment in vertically cascaded metamaterial absorbers,” Opt. Express 21(13), 15896–15903 (2013).
[Crossref] [PubMed]

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Sonkusale, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Sorel, M.

Sriram, S.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Steer, M.

Stenger, V.

Su, B.

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

Suen, J. Y.

Sun, F.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Q. Chen, F. Sun, and S. Song, “Subcell misalignment in vertically cascaded metamaterial absorbers,” Opt. Express 21(13), 15896–15903 (2013).
[Crossref] [PubMed]

Sweatlock, L. A.

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Thayne, I. G.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Usamentiaga, R.

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Vega, L.

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Venegas, P.

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Venkatesh, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Walters, R. J.

Wang, H.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Wegener, M.

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
[Crossref]

Wen, L.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Xie, C.

Xu, G.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Xu, W.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Ye, Y. Q.

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Zhang, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, X. P.

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

Zhao, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhu, W. R.

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

ACS Photonics (2)

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “A symmetry-breaking selective plasmonic metasurface Ultra-narrow linewidth polarization-insensitive filter using a symmetry-breaking selective plasmonic metasurface,” ACS Photonics 5(2), 663 (2017).

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al 2 O 3 –Al Trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Adv. Opt. Mater. (1)

I. J. H. Mccrindle, J. Grant, T. D. Drysdale, and D. R. S. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater. 2(2), 149–153 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

W. R. Zhu, X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, “Optical metamaterial absorber based on leaf-shaped cells,” Appl. Phys. A 102(1), 147–151 (2011).

Appl. Phys. Lett. (1)

F. B. P. Niesler, J. K. Gansel, S. Fischbach, and M. Wegener, “Metamaterial metal-based bolometers,” Appl. Phys. Lett. 100(20), 2012–2015 (2012).
[Crossref]

IEEE Photonics J. (1)

J.-Y. Jung, J. Lee, D.-G. Choi, J.-H. Choi, J.-H. Jeong, E.-S. Lee, and D. P. Neikirk, “Wavelength-Selective Infrared Metasurface Absorber for Multispectral Thermal Detection,” IEEE Photonics J. 7(6), 1–10 (2015).
[Crossref]

J. Opt. (1)

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 1–7 (2013).

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photonics Rev. 7(6), 1043–1048 (2013).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Nanoscale (1)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5(20), 9615–9619 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (2)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. Lett. (3)

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. J. Padilla, “Experimental Realization of a Metamaterial Detector Focal Plane Array,” Phys. Rev. Lett. 109(17), 177401 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Phys. Status Solidi Appl. Mater. Sci. (1)

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sensors (1)

D. Gibson and C. MacGregor, “A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment,” Sensors 13(6), 7079–7103 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors (Basel) 14(7), 12305–12348 (2014).
[Crossref] [PubMed]

Other (6)

C.-C. Chen Attenuation of Electromagnetic Radiation by Haze, Fog, Clouds, and Rain," (1975).

A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer London, 2006).

VISIMID GigE PoE Broadband Camera Specifications (2018).

S. Kang, Z. Qian, V. Rajaram, A. Alu, and M. Rinaldi, “Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems,” in TRANSDUCERS 2017 - 19th Int. Conf. Solid-State Sensors, Actuators Microsystems (2017), pp. 886–889.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science & Tech, 1985).

S. A. Maier, Plasmonics : Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Concept and SEM images of fabricated CMOS compatible MWIR metamaterial absorbers. (a) 3D schematic of the metamaterial absorber. A Ti/Al ground plane is separated from a Ti/Al ERR by a SiO2 dielectric layer of thickness, t. The ERR has a variable cross arm length, l, from 800 to 1700 nm and a fixed arm width, w, of 400 nm. (b) Scanning electron microscope (SEM) image of a MWIR metamaterial absorber with l = 800 nm. (c) SEM image of a MWIR metamaterial absorber with l = 1700 nm. The unit cell period is 2000 nm.
Fig. 2
Fig. 2 Simulation data for the CMOS compatible MWIR metamaterial absorbers. Simulated absorption spectra for metamaterial absorbers with fixed arms widths, w = 400 nm, and arm lengths, l, varying from 800 to 1700 nm for SiO2 dielectric thickness of (a) 25 nm, (b) 50 nm, (c) 75 nm and (d) 100 nm.
Fig. 3
Fig. 3 Experimental data for the CMOS compatible MWIR metamaterial absorbers. Experimental absorption spectra for metamaterial absorbers with fixed arms widths, w = 400 nm, and arm lengths, l, varying from 800 to 1700 nm for SiO2 dielectric thickness of (a) 25 nm, (b) 50 nm, (c) 75 nm and (d) 100 nm.
Fig. 4
Fig. 4 Analysis and comparison of simulation and experimental data for the CMOS compatible MWIR metamaterial absorbers. Simulated and experimental comparison of (a) peak absorption wavelength position versus cross arm length, (b) absorption magnitude versus cross arm length and (c) Q value versus cross arm length for the 4 different SiO2 thicknesses.
Fig. 5
Fig. 5 Spectral absorption intensity for incident angles up to 60° for the CMOS compatible MWIR metamaterial absorbers with a 75 nm thick SiO2 spacer for both TE and TM polarisations and varying cross arm lengths. TE data is shown for cross arm lengths of (a) 800 nm, (b) 900 nm, (c) 1000 nm, (d) 1100 nm, (e) 1200 nm, (f) 1300 nm, (g) 1400 nm, (h) 1500 nm, (i) 1600 nm and (j) 1700 nm. TM data is shown for cross arm lengths of (k) 800 nm, (l) 900 nm, (m) 1000 nm, (n) 1100 nm, (o) 1200 nm, (p) 1300 nm, (q) 1400 nm, (r) 1500 nm, (s) 1600 nm and (t) 1700 nm.
Fig. 6
Fig. 6 Spectral absorption intensity for incident angles up to 60° for the CMOS compatible MWIR metamaterial absorbers with different SiO2 spacer thicknesses for both TE and TM polarisations for cross arm lengths of 800 nm and 1700 nm. (a), (c), (d), (g), (i), (k), (m) and (o) are for cross arm lengths of 800 nm. (b), (d), (e), (h), (j), (l), (n) and (p) are for cross arm lengths of 1700 nm.
Fig. 7
Fig. 7 Observation of a Fano resonance. (a) Interference between the metamaterial absorber mode and the surface plasmon polariton mode (SPP) results in Fano resonant behaviour at 20° and 30° oblique incident angles for a metamaterial absorber with a SiO2 spacer thickness of 75 nm and cross arm length of 800 nm. (b) Spectral absorption characteristics for differing incident angles for a metamaterial absorber with l = 800 nm where the 75 nm dielectric spacer is Si3N4 instead of SiO2. Spectral absorption characteristics at normal incidence for metamaterial absorbers with a 75 nm Si3N4 dielectric spacer and varying cross-arm lengths. (d) Dispersion relationship of the SPP absorption peak for metamaterial absorbers with a SiO2 thickness of 75 nm and varying cross arm lengths and for a metamaterial absorber with a 75 nm Si3N4 dielectric spacer and a cross arm length of 1700 nm. Spectral absorption intensity for incident angles up to 60° for a metamaterial absorber with period = 1000 nm, SiO2 dielectric spacer thickness of 75 nm and cross arm length of 800 nm for both (e) TM and (f) TE polarisations.
Fig. 8
Fig. 8 Analysis and comparison of simulation data for the CMOS MWIR metamaterial absorbers of cross, circular and square shaped ERRs with a SiO2 dielectric spacer thickness of 75 nm. (a) wavelength peak position and (b) Q value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f m = 1 LC/2

Metrics