Abstract

The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. In order to solve the problems of the narrow measurement angle range and low resolution in traditional angle measurement method, we proposed an angle measurement system using orthogonal mirror self-mixing interferometry combine an orthogonal mirror with designed mechanical linkage. It overcomes the shortcomings of traditional angle measurement methods and realized the angle measurement with microradian resolution in a full-circle range of 0 rad to 2π rad. In the experiment, the measurement resolution can reach to 5.27 µrad and the absolute error can lower to ± 0.011µrad, which satisfies the requirements of most high accuracy angle measurement.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement

Yufeng Tao, Wei Xia, Ming Wang, Dongmei Guo, and Hui Hao
Opt. Express 25(3) 2285-2298 (2017)

Self-mixing interferometry for rotational speed measurement of servo drives

Hui Sun, Ji-Gou Liu, Quan Zhang, and Ralph Kennel
Appl. Opt. 55(2) 236-241 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Emadi, L. B. Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Measurement 54(8), 58–64 (2014).
    [Crossref]
  2. B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
    [Crossref]
  3. P. R. Yoder, E. R. Schlesinger, and J. L. Chickvary, “Active annular-beam laser autocollimator system,” Appl. Opt. 14(8), 1890–1895 (1975).
    [Crossref] [PubMed]
  4. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31(28), 6047–6055 (1992).
    [Crossref] [PubMed]
  5. M. Dobosz and O. Iwasinska-Kowalska, “Interference method for ultra-precision measurement and compensation of laser beam angular deflection,” Appl. Opt. 53(1), 111–122 (2014).
    [Crossref] [PubMed]
  6. A. Zhang and P. S. Huang, “Total internal reflection for precision small-angle measurement,” Appl. Opt. 40(10), 1617–1622 (2001).
    [Crossref] [PubMed]
  7. J. Y. Lin and Y. C. Liao, “Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer,” Appl. Opt. 53(9), 1903–1908 (2014).
    [Crossref] [PubMed]
  8. Y. Pavan Kumar, S. Chatterjee, and S. S. Negi, “Small roll angle measurement using lateral shearing cyclic path polarization interferometry,” Appl. Opt. 55(5), 979–983 (2016).
    [Crossref] [PubMed]
  9. F. Cheng and K. C. Fan, “High-resolution angle measurement based on michelson interferometry,” Phys. Procedia 19(19), 3–8 (2011).
    [Crossref]
  10. J. Zhong, X. Zhang, and Z. Ju, “Absolute small-angle measurement based on optical feedback interferometry,” Chin. Opt. Lett. 6(11), 830–832 (2008).
    [Crossref]
  11. S. Zhang, Y. Tan, and S. Zhang, “Non-contact angle measurement based on parallel multiplex laser feedback interferometry,” Chin. Phys. B 23(11), 114202 (2014).
    [Crossref]
  12. J. Yuan and X. Long, “CCD-area-based autocollimator for precision small-angle measurement,” Rev. Sci. Instrum. 74(3), 1362–1365 (2003).
    [Crossref]
  13. A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surface by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
    [Crossref]
  14. K. Zhu, B. Guo, S. Zhang, Y. Tan, and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica 4(7), 729–735 (2017).
    [Crossref]
  15. S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1400108 (2015).
    [Crossref]
  16. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
    [Crossref] [PubMed]
  17. S. Zhang, L. Yan, B. Chen, Z. Xu, and J. Xie, “Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement,” Opt. Express 25(1), 472–485 (2017).
    [Crossref] [PubMed]
  18. Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
    [Crossref]
  19. J. Chen, H. Zhu, W. Xia, D. Guo, H. Hao, and M. Wang, “Self-mixing birefringent dual-frequency laser Doppler velocimeter,” Opt. Express 25(2), 560–572 (2017).
    [Crossref] [PubMed]
  20. S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
    [Crossref]
  21. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
    [Crossref] [PubMed]
  22. S. Sudo, T. Ohtomo, Y. Takahashi, T. Oishi, and K. Otsuka, “Determination of velocity of self-mobile phytoplankton using a self-mixing thin-slice solid-state laser,” Appl. Opt. 48(20), 4049–4055 (2009).
    [Crossref] [PubMed]
  23. X. Dai, M. Wang, Y. Zhao, and J. Zhou, “Self-mixing interference in fiber ring laser and its application for vibration measurement,” Opt. Express 17(19), 16543–16548 (2009).
    [Crossref] [PubMed]
  24. U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
    [Crossref]
  25. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
    [Crossref]
  26. W. M. Wang, W. J. Boyle, K. T. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
    [Crossref] [PubMed]
  27. P. J. de Groot, G. M. Gallatin, and S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27(21), 4475–4480 (1988).
    [Crossref] [PubMed]

2017 (5)

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

K. Zhu, B. Guo, S. Zhang, Y. Tan, and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica 4(7), 729–735 (2017).
[Crossref]

S. Zhang, L. Yan, B. Chen, Z. Xu, and J. Xie, “Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement,” Opt. Express 25(1), 472–485 (2017).
[Crossref] [PubMed]

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

J. Chen, H. Zhu, W. Xia, D. Guo, H. Hao, and M. Wang, “Self-mixing birefringent dual-frequency laser Doppler velocimeter,” Opt. Express 25(2), 560–572 (2017).
[Crossref] [PubMed]

2016 (2)

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Y. Pavan Kumar, S. Chatterjee, and S. S. Negi, “Small roll angle measurement using lateral shearing cyclic path polarization interferometry,” Appl. Opt. 55(5), 979–983 (2016).
[Crossref] [PubMed]

2015 (1)

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1400108 (2015).
[Crossref]

2014 (4)

S. Zhang, Y. Tan, and S. Zhang, “Non-contact angle measurement based on parallel multiplex laser feedback interferometry,” Chin. Phys. B 23(11), 114202 (2014).
[Crossref]

M. Dobosz and O. Iwasinska-Kowalska, “Interference method for ultra-precision measurement and compensation of laser beam angular deflection,” Appl. Opt. 53(1), 111–122 (2014).
[Crossref] [PubMed]

N. A. Emadi, L. B. Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Measurement 54(8), 58–64 (2014).
[Crossref]

J. Y. Lin and Y. C. Liao, “Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer,” Appl. Opt. 53(9), 1903–1908 (2014).
[Crossref] [PubMed]

2011 (1)

F. Cheng and K. C. Fan, “High-resolution angle measurement based on michelson interferometry,” Phys. Procedia 19(19), 3–8 (2011).
[Crossref]

2010 (2)

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
[Crossref] [PubMed]

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (1)

2003 (1)

J. Yuan and X. Long, “CCD-area-based autocollimator for precision small-angle measurement,” Rev. Sci. Instrum. 74(3), 1362–1365 (2003).
[Crossref]

2001 (1)

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

1993 (1)

1992 (1)

1988 (1)

1982 (1)

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surface by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

1975 (1)

An, T.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Benammar, M.

N. A. Emadi, L. B. Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Measurement 54(8), 58–64 (2014).
[Crossref]

Bertling, K.

Bony, F.

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
[Crossref]

Bosch, T.

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
[Crossref]

Boyle, W. J.

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

Brahim, L. B.

N. A. Emadi, L. B. Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Measurement 54(8), 58–64 (2014).
[Crossref]

Chatterjee, S.

Chen, B.

Chen, J.

Cheng, F.

F. Cheng and K. C. Fan, “High-resolution angle measurement based on michelson interferometry,” Phys. Procedia 19(19), 3–8 (2011).
[Crossref]

Chickvary, J. L.

Dai, X.

de Groot, P. J.

Dobosz, M.

Donati, S.

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1400108 (2015).
[Crossref]

Emadi, N. A.

N. A. Emadi, L. B. Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Measurement 54(8), 58–64 (2014).
[Crossref]

Ennos, A. E.

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surface by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Fan, K. C.

F. Cheng and K. C. Fan, “High-resolution angle measurement based on michelson interferometry,” Phys. Procedia 19(19), 3–8 (2011).
[Crossref]

Gallatin, G. M.

Grattan, K. T.

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

Gui, H.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Guo, B.

Guo, D.

Hao, H.

Huang, P. S.

Huang, W.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Iwasinska-Kowalska, O.

Jacobs, P. A.

Ju, Z.

Kamada, O.

Kiyono, S.

Kliese, R.

Liao, Y. C.

Lim, Y. L.

Lin, J. Y.

Liu, J.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Long, X.

J. Yuan and X. Long, “CCD-area-based autocollimator for precision small-angle measurement,” Rev. Sci. Instrum. 74(3), 1362–1365 (2003).
[Crossref]

Lu, L.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Ma, Y.

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Macomber, S. H.

Negi, S. S.

Norgia, M.

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1400108 (2015).
[Crossref]

Ohtomo, T.

Oishi, T.

Otsuka, K.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

W. M. Wang, W. J. Boyle, K. T. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

Pavan Kumar, Y.

Rakic, A. D.

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
[Crossref] [PubMed]

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
[Crossref]

Rossi, D.

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1400108 (2015).
[Crossref]

Schlesinger, E. R.

Sudo, S.

Takahashi, Y.

Tan, Y.

Tanimizu, K.

Virdee, M. S.

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surface by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Wang, D.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Wang, H.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Wang, M.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

W. M. Wang, W. J. Boyle, K. T. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

Wang, X.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Wei, Y.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Wei, Z.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Wu, S.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Xia, W.

Xiang, R.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Xie, J.

Xu, H.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Xu, Z.

Yan, L.

Yang, B.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

Yoder, P. R.

Yu, B.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Yuan, J.

J. Yuan and X. Long, “CCD-area-based autocollimator for precision small-angle measurement,” Rev. Sci. Instrum. 74(3), 1362–1365 (2003).
[Crossref]

Zabit, U.

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
[Crossref]

Zhang, A.

Zhang, J.

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Zhang, S.

K. Zhu, B. Guo, S. Zhang, Y. Tan, and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica 4(7), 729–735 (2017).
[Crossref]

S. Zhang, L. Yan, B. Chen, Z. Xu, and J. Xie, “Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement,” Opt. Express 25(1), 472–485 (2017).
[Crossref] [PubMed]

S. Zhang, Y. Tan, and S. Zhang, “Non-contact angle measurement based on parallel multiplex laser feedback interferometry,” Chin. Phys. B 23(11), 114202 (2014).
[Crossref]

S. Zhang, Y. Tan, and S. Zhang, “Non-contact angle measurement based on parallel multiplex laser feedback interferometry,” Chin. Phys. B 23(11), 114202 (2014).
[Crossref]

Zhang, W.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

Zhang, X.

Zhao, Y.

Zhong, J.

Zhou, J.

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

X. Dai, M. Wang, Y. Zhao, and J. Zhou, “Self-mixing interference in fiber ring laser and its application for vibration measurement,” Opt. Express 17(19), 16543–16548 (2009).
[Crossref] [PubMed]

Zhou, L.

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

Zhu, H.

Zhu, K.

Appl. Opt. (10)

P. R. Yoder, E. R. Schlesinger, and J. L. Chickvary, “Active annular-beam laser autocollimator system,” Appl. Opt. 14(8), 1890–1895 (1975).
[Crossref] [PubMed]

P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31(28), 6047–6055 (1992).
[Crossref] [PubMed]

M. Dobosz and O. Iwasinska-Kowalska, “Interference method for ultra-precision measurement and compensation of laser beam angular deflection,” Appl. Opt. 53(1), 111–122 (2014).
[Crossref] [PubMed]

A. Zhang and P. S. Huang, “Total internal reflection for precision small-angle measurement,” Appl. Opt. 40(10), 1617–1622 (2001).
[Crossref] [PubMed]

J. Y. Lin and Y. C. Liao, “Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer,” Appl. Opt. 53(9), 1903–1908 (2014).
[Crossref] [PubMed]

Y. Pavan Kumar, S. Chatterjee, and S. S. Negi, “Small roll angle measurement using lateral shearing cyclic path polarization interferometry,” Appl. Opt. 55(5), 979–983 (2016).
[Crossref] [PubMed]

D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[Crossref] [PubMed]

S. Sudo, T. Ohtomo, Y. Takahashi, T. Oishi, and K. Otsuka, “Determination of velocity of self-mobile phytoplankton using a self-mixing thin-slice solid-state laser,” Appl. Opt. 48(20), 4049–4055 (2009).
[Crossref] [PubMed]

W. M. Wang, W. J. Boyle, K. T. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

P. J. de Groot, G. M. Gallatin, and S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27(21), 4475–4480 (1988).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

Chin. Phys. B (1)

S. Zhang, Y. Tan, and S. Zhang, “Non-contact angle measurement based on parallel multiplex laser feedback interferometry,” Chin. Phys. B 23(11), 114202 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Donati, D. Rossi, and M. Norgia, “Single channel self-mixing interferometer measures simultaneously displacement and tilt and yaw angles of a reflective target,” IEEE J. Quantum Electron. 51(12), 1400108 (2015).
[Crossref]

IEEE Photonic. Tech. Lett. (1)

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photonic. Tech. Lett. 22(6), 410–412 (2010).
[Crossref]

J. Lightwave Technol. (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[Crossref]

Measurement (1)

N. A. Emadi, L. B. Brahim, and M. Benammar, “A new tracking technique for mechanical angle measurement,” Measurement 54(8), 58–64 (2014).
[Crossref]

Opt. Commun. (1)

Y. Wei, W. Huang, Z. Wei, J. Zhang, T. An, X. Wang, and H. Xu, “Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry,” Opt. Commun. 393, 178–184 (2017).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

B. Yang, D. Wang, L. Zhou, S. Wu, R. Xiang, W. Zhang, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range,” Opt. Laser Technol. 91, 92–97 (2017).
[Crossref]

Optica (1)

Phys. Procedia (1)

F. Cheng and K. C. Fan, “High-resolution angle measurement based on michelson interferometry,” Phys. Procedia 19(19), 3–8 (2011).
[Crossref]

Precis. Eng. (1)

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surface by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Rev. Sci. Instrum. (1)

J. Yuan and X. Long, “CCD-area-based autocollimator for precision small-angle measurement,” Rev. Sci. Instrum. 74(3), 1362–1365 (2003).
[Crossref]

Sensors (Basel) (1)

S. Wu, D. Wang, R. Xiang, J. Zhou, Y. Ma, H. Gui, J. Liu, H. Wang, L. Lu, and B. Yu, “All-fiber configuration laser self-mxing doppler velocimeter based on distributed feedback fiber laser,” Sensors (Basel) 16(8), 1179 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The principle schematic of the optical path of external cavity length in AM-OM-SMI system.
Fig. 2
Fig. 2 Simulated self-mixing angle measurement signal with different vertex distance Dov, C is 0.8; α is 3, λ is 632.8nm; (a) the vertex distance Dov = 2cm; (b) the vertex distance Dov = 3cm.
Fig. 3
Fig. 3 Theoretical angle measurement resolution at different measuring angle.
Fig. 4
Fig. 4 Experimental setup of AM-OM-SMI system.
Fig. 5
Fig. 5 The experiment results with different vertex distance. (a) the vertex distance Dov = 2cm; (b) the vertex distance Dov = 3cm.
Fig. 6
Fig. 6 Analysis diagram of different vertex distance. (a) the vertex distance Dov = 2cm; (b) the vertex distance Dov = 3cm.
Fig. 7
Fig. 7 Relative error and absolute error of rotating disks with different vertex distance. (a) the vertex distance Dov = 2cm;(b) the vertex distance Dov = 3cm.

Tables (1)

Tables Icon

Table 1 The comparison of measurement range and best resolution with other systems.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

OPD=| nΔL |=| n( L AEFGFEA L ABCDCBA ) |=| 2n(FH2BE) | =| 4n D ov sinθ |=| 2n( L ext L 0 ) |
I= I 0 [1+mcos( φ L )]
φ L = φ 0 Csin( φ L +arctanα)
φ 0 = 4πn L ext λ
OPD=| 4n D ov sin(θ+ θ 0 ) |=Nλ
θ r =arcsin( | Nλ 4n D ov | )arcsin( | (N1)λ 4n D ov | )

Metrics