Abstract

We report the first demonstration of high-performance GeSn metal-semiconductor-metal (MSM) photodetector and GeSn p-type fin field-effect transistor (pFinFET) on an advanced GeSn-on-insulator (GeSnOI) platform by complementary metal-oxide-semiconductor (CMOS) compatible processes. The detection range of GeSn photodetector is extended beyond 2 µm, with responsivities of 0.39 and 0.10 A/W at 1550 nm and 2003 nm, respectively. Through the insertion of an ultrathin Al2O3 Schottky-barrier-enhancement layer, the dark current IDark of the GeSn photodetector is suppressed by more than 2 orders of magnitude. An impressive IDark of ~65 nA was achieved at an operating voltage of 1.0 V. A frequency response measurement reveals the achievement of a 3-dB bandwidth of ~1.4 GHz at an illumination wavelength of 2 µm. GeSn pFinFET with fin width (Wfin) scaled down to 15 nm was also fabricated on the GeSnOI platform, exhibiting a small subthreshold swing (S) of 93 mV/decade, a high drive current of 176 µA/µm, and good control of short channel effects (SCEs). This work paves the way for realizing compact, low-cost, and multi-functional GeSn-on-insulator opto-electronic integrated circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD

Ghada Dushaq, Ammar Nayfeh, and Mahmoud Rasras
Opt. Express 25(25) 32110-32119 (2017)

CMOS-integrated high-speed MSM germanium waveguide photodetector

Solomon Assefa, Fengnian Xia, Stephen W. Bedell, Ying Zhang, Teya Topuria, Philip M. Rice, and Yurii A. Vlasov
Opt. Express 18(5) 4986-4999 (2010)

Silicon-Germanium multi-quantum well photodetectors in the near infrared

Efe Onaran, M. Cengiz Onbasli, Alper Yesilyurt, Hyun Yong Yu, Ammar M. Nayfeh, and Ali K. Okyay
Opt. Express 20(7) 7608-7615 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
    [Crossref] [PubMed]
  2. S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
    [Crossref] [PubMed]
  3. W. Wu, X. Wen, and Z. L. Wang, “Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging,” Science 340(6135), 952–957 (2013).
    [Crossref] [PubMed]
  4. J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
    [Crossref]
  5. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
    [Crossref]
  6. A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
    [Crossref]
  7. D. Stange, N. von den Driesch, D. Rainko, S. Roesgaard, I. Povstugar, J. M. Hartmann, T. Stoica, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells,” Optica 4(2), 185–188 (2017).
    [Crossref]
  8. X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
    [Crossref]
  9. S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
    [Crossref]
  10. M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.
  11. Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
    [Crossref]
  12. D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
    [Crossref]
  13. Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.
  14. G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).
  15. Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications,” Opt. Express 23(6), 7924–7932 (2015).
    [Crossref] [PubMed]
  16. Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength,” Opt. Express 23(2), 739–746 (2015).
    [Crossref] [PubMed]
  17. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  18. C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
    [Crossref] [PubMed]
  19. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
  20. K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
    [Crossref]
  21. H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
    [Crossref]
  22. M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
    [Crossref]
  23. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
    [Crossref]
  24. H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics,” Opt. Mater. Express 3(9), 1385–1396 (2013).
    [Crossref]
  25. D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
    [Crossref]
  26. P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.
  27. J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
    [Crossref] [PubMed]
  28. H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
    [Crossref]
  29. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3(8), 823–826 (2016).
    [Crossref]
  30. V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
    [Crossref]
  31. W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
    [Crossref]
  32. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
    [Crossref] [PubMed]
  33. Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
    [Crossref] [PubMed]
  34. J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.
  35. B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
    [Crossref] [PubMed]
  36. M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
    [Crossref] [PubMed]
  37. O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
    [Crossref]
  38. T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett. 91(12), 123123 (2007).
    [Crossref]
  39. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
    [Crossref]
  40. L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
    [Crossref]
  41. K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
    [Crossref]
  42. T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Express 1(5), 051406 (2008).
    [Crossref]
  43. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
    [Crossref] [PubMed]
  44. M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
    [Crossref]
  45. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
    [Crossref] [PubMed]
  46. Y. H. Huang, G. E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
    [Crossref] [PubMed]
  47. W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
    [Crossref] [PubMed]
  48. V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
    [Crossref]
  49. K. Thyagarajan and A. Ghatak, Fiber Optic Essentials (John Wiley & Sons, 2007).
  50. P. C. Hobbs, Building Electro-optical Systems: Making it all Work (John Wiley & Sons, 2011).
  51. C. Lim and R. A. Moore, “Properties of alternately charged coplanar parallel strips by conformal mapping,” IEEE Trans. Electron Dev. 15(3), 173–180 (1968).
    [Crossref]

2017 (5)

2016 (8)

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3(8), 823–826 (2016).
[Crossref]

C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
[Crossref] [PubMed]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

2015 (4)

2014 (9)

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
[Crossref]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

2013 (4)

W. Wu, X. Wen, and Z. L. Wang, “Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging,” Science 340(6135), 952–957 (2013).
[Crossref] [PubMed]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics,” Opt. Mater. Express 3(9), 1385–1396 (2013).
[Crossref]

2012 (2)

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

2011 (2)

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

2010 (1)

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

2008 (3)

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Express 1(5), 051406 (2008).
[Crossref]

2007 (1)

T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett. 91(12), 123123 (2007).
[Crossref]

2004 (1)

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

1998 (1)

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

1968 (1)

C. Lim and R. A. Moore, “Properties of alternately charged coplanar parallel strips by conformal mapping,” IEEE Trans. Electron Dev. 15(3), 173–180 (1968).
[Crossref]

Afshinmanesh, F.

Ando, T.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Ang, K. W.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Antoniadis, D.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Bai, F.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Balakrishnan, K.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Balram, K.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Bao, S.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Bechler, S.

Beenhakkers, M.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Benito, E. M.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Bhole, S.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Brendel, C. E.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Brongersma, M. L.

Brouillet, J.

Bruley, J.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Buca, D.

Caimi, D.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Cantatore, E.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Cao, Q.

Caymax, M.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Chang, C.

Chang, C. P.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Chang, G. E.

Chang, T.-C.

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

Chava, P.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Chen, R.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Chen, Y.-A.

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

Cheng, B.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Cheng, H. H.

Cheng, R.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Chikita, H.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Chu, S. S.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Chua, K. T.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Chung, H.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Cong, H.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Conley, B. R.

Czornomaz, L.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

D’Costa, V. R.

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

Daix, N.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

de Leeuw, D. M.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Dekoster, J.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Delmotte, J.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Deshpande, V.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Djara, V.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Dong, Y.

Douhard, B.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Du, W.

Eisenschmidt, C.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Engelmann, S.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Fan, W.

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Feng, Q.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Fenrich, C. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Firrincieli, A.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Flavin, M.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Fompeyrine, J.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Franquet, A.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Fu, H.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Gallagher, J. D.

J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
[Crossref]

Gassenq, A.

Gelinck, G. H.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Gencarelli, F.

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Geuns, T. C.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Ghetmiri, S. A.

Giesbers, J. B.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Gollhofer, M.

Gong, X.

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Grützmacher, D.

Guan, Y.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Gunji, M.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Guo, P.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Guo, X.

Gupta, S.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Han, G.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength,” Opt. Express 23(2), 739–746 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications,” Opt. Express 23(6), 7924–7932 (2015).
[Crossref] [PubMed]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Han, Z.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Hansen, M. P.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

Hao, Y.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength,” Opt. Express 23(2), 739–746 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications,” Opt. Express 23(6), 7924–7932 (2015).
[Crossref] [PubMed]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Harris, J.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Harris, J. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Hartmann, J. M.

D. Stange, N. von den Driesch, D. Rainko, S. Roesgaard, I. Povstugar, J. M. Hartmann, T. Stoica, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells,” Optica 4(2), 185–188 (2017).
[Crossref]

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Hashemi, P.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Hendrickson, J.

Hitzman, C.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Hong, J.-W.

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

Hu, W.

Huang, C. H.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Huang, X.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Huang, Y.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Huang, Y. C.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Huang, Y. H.

Huang, Y. S.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Huang, Y.-C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Huisman, B. H.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Huitema, H. E. A.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Huo, Y.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Ikenoue, H.

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

Ikonic, Z.

Jan, S. R.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Jang, K. I.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Jia, L.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Jin, M.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Jung, W. S.

Kai, Y.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Kamins, T. I.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
[Crossref] [PubMed]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Kaschel, M.

Kasper, E.

Kim, J.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Kim, Y.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Kita, K.

T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Express 1(5), 051406 (2008).
[Crossref]

T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett. 91(12), 123123 (2007).
[Crossref]

Körner, R.

Kostecki, K.

Kouvetakis, J.

J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
[Crossref]

Krishnan, M.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Ku, C. T.

Kuppurao, S.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Kurosawa, M.

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

Kwong, D. L.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Laih, L.-H.

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

Lan, H. S.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Lee, K. H.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Lee, S. Y.

Lei, D.

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

Leobandung, E.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Li, B.

Li, C.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Li, H.

Li, L.

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

Li, X.

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Liang, G.

W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

Lim, C.

C. Lim and R. A. Moore, “Properties of alternately charged coplanar parallel strips by conformal mapping,” IEEE Trans. Electron Dev. 15(3), 173–180 (1968).
[Crossref]

Lin, C. Y.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Lin, D. H. C.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Lin, H.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Lin, J.-Y. J.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Liu, A.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Liu, C. W.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Liu, J.

Liu, M.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Liu, Y.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength,” Opt. Express 23(2), 739–746 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications,” Opt. Express 23(6), 7924–7932 (2015).
[Crossref] [PubMed]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Liu, Z.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Lo, G. Q.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Lofaro, M.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Loke, W. K.

Loo, R.

Low, L.

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Lu, F. L.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Lubyshev, D.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Luo, W.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

Magyari-Köpe, B.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Malchow, D. S.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

Mantl, S.

Marchiori, C.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Margetis, J.

Marsman, A. W.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Mathewson, K. E.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Matsumura, R.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Meijer, E. J.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Menendez, J.

J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
[Crossref]

Miller, D.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Miyao, M.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Mo, R. T.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Moore, R. A.

C. Lim and R. A. Moore, “Properties of alternately charged coplanar parallel strips by conformal mapping,” IEEE Trans. Electron Dev. 15(3), 173–180 (1968).
[Crossref]

Morea, M.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Mosleh, A.

Na, Y. J.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Nakatsuka, O.

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Nam, D.

Nam, J. H.

Narayanan, V.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Narcy, G.

Naseem, H. A.

Nishi, Y.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Nishimura, T.

T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Express 1(5), 051406 (2008).
[Crossref]

T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett. 91(12), 123123 (2007).
[Crossref]

Oehme, M.

Ott, J. A.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Ottaviano, L.

Oya, N.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Pan, J.

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Park, D. G.

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

Pham, T.

Povstugar, I.

Pu, M.

Rainko, D.

Roelkens, G.

Roesgaard, S.

Rogers, J. A.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Rossel, C.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Sadana, D.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Sadoh, T.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Saitoh, N.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Sakai, A.

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Salas, A.

Sanchez, E.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Saraswat, K.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

Saraswat, K. C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
[Crossref] [PubMed]

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Schilling, J.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Schmid, M.

Schmidt, G.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Schrijnemakers, L.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Schulze, J.

Semenova, E.

Senaratne, C. L.

J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
[Crossref]

Shimura, Y.

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Shiu, K. T.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Si, M.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

Siegwart, H.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Soref, R. A.

Sousa, M.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Stange, D.

Steiner, R.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Stoica, T.

Su, S.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Suemasu, T.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Suh, J.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Sun, G.

Takeuchi, S.

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Talalaev, V. G.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Tan, C. S.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Taoka, N.

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

Tok, E. S.

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Tok, E.-S.

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

Toko, K.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Tolle, J.

Tonkikh, A. A.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Toriumi, A.

T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Express 1(5), 051406 (2008).
[Crossref]

T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett. 91(12), 123123 (2007).
[Crossref]

Touwslager, F. J.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Tran, H.

Tsay, W.-C.

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

Tsutsui, N.

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Uccelli, E.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Ulbricht, K.

Van Campenhout, J.

van der Putten, J. B.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

van Rens, B. J.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

van Veenendaal, E.

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Vincent, B.

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

von den Driesch, N.

Wang, B.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Wang, H.

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Wang, J.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Wang, L.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Wang, Q.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, R.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Wang, W.

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Wang, Z. L.

W. Wu, X. Wen, and Z. L. Wang, “Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging,” Science 340(6135), 952–957 (2013).
[Crossref] [PubMed]

Wen, J.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Wen, X.

W. Wu, X. Wen, and Z. L. Wang, “Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging,” Science 340(6135), 952–957 (2013).
[Crossref] [PubMed]

Weng, C. W.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

Werner, P.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Wong, I. H.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Wu, H.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

Wu, W.

W. Wu, X. Wen, and Z. L. Wang, “Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging,” Science 340(6135), 952–957 (2013).
[Crossref] [PubMed]

Xu, S.

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Xue, C.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, H.

Yan, J.

Yang, B.

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

Yang, F.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Yang, S. G.

Yang, Y.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Ye, H. Y.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

Ye, K.

Ye, P. D.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

Yeo, Y. C.

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Yeo, Y.-C.

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Yoon, S. F.

Yoshizawa, N.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Yu, M. B.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Yu, S. Q.

Yu, S.-Q.

Yvind, K.

Zaima, S.

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Zakharov, N. D.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

Zang, K.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Zhang, C.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength,” Opt. Express 23(2), 739–746 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications,” Opt. Express 23(6), 7924–7932 (2015).
[Crossref] [PubMed]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Zhang, D.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Zhang, G.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Zhang, J.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

Zhang, Q.

Zhang, W.

Zhang, X.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Zhang, Y.

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

Zhang, Z.

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Zhao, B.

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

Zhao, S.

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

Zheng, J.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Zhou, H.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

Zhou, Q.

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

Zhu, S. Y.

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

Zuo, Y.

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

T. Nishimura, K. Kita, and A. Toriumi, “A significant shift of Schottky barrier heights at strongly pinned metal/germanium interface by inserting an ultra-thin insulating film,” Appl. Phys. Express 1(5), 051406 (2008).
[Crossref]

Appl. Phys. Lett. (9)

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett. 91(12), 123123 (2007).
[Crossref]

J. D. Gallagher, C. L. Senaratne, J. Kouvetakis, and J. Menendez, “Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys,” Appl. Phys. Lett. 105(14), 142102 (2014).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103(3), 032106 (2013).
[Crossref]

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

M. Kurosawa, N. Taoka, H. Ikenoue, O. Nakatsuka, and S. Zaima, “Large grain growth of Ge-rich Ge1-xSnx (x≈0.02) on insulating surfaces using pulsed laser annealing in flowing water,” Appl. Phys. Lett. 104(6), 061901 (2014).
[Crossref]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y. C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Appl. Surf. Sci. (1)

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y. C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

IEEE Electron Device Lett. (3)

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y. C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

G. Han, Y. Wang, Y. Liu, C. Zhang, Q. Feng, M. Liu, S. Zhao, B. Cheng, J. Zhang, and Y. Hao, “GeSn quantum well p-channel tunneling FETs fabricated on Si (001) and (111) with improved subthreshold swing,” IEEE Electron Device Lett. 37(6), 701–704 (2016).

K. W. Ang, S. Y. Zhu, J. Wang, K. T. Chua, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Novel silicon-carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors,” IEEE Electron Device Lett. 29(7), 704–707 (2008).
[Crossref]

IEEE Trans. Electron Dev. (3)

C. Lim and R. A. Moore, “Properties of alternately charged coplanar parallel strips by conformal mapping,” IEEE Trans. Electron Dev. 15(3), 173–180 (1968).
[Crossref]

L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, “Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer,” IEEE Trans. Electron Dev. 45(9), 2018–2023 (1998).
[Crossref]

Y. Liu, J. Yan, H. Wang, Q. Zhang, M. Liu, B. Zhao, C. Zhang, B. Cheng, Y. Hao, and G. Han, “Strained GeSn p-channel metal–oxide–semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition,” IEEE Trans. Electron Dev. 61(11), 3639–3645 (2014).
[Crossref]

J. Appl. Phys. (3)

D. Lei, W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, “Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: impact of sulfur passivation on gate stack quality,” J. Appl. Phys. 119(2), 024502 (2016).
[Crossref]

L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

O. Nakatsuka, N. Tsutsui, Y. Shimura, S. Takeuchi, A. Sakai, and S. Zaima, “Mobility behavior of Ge1-xSnx layers grown on silicon-on-insulator substrates,” Jpn. J. Appl. Phys. 49, 04DA10 (2010).
[Crossref]

Nat. Mater. (1)

G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nat. Mater. 3(2), 106–110 (2004).
[Crossref] [PubMed]

Opt. Express (10)

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications,” Opt. Express 23(6), 7924–7932 (2015).
[Crossref] [PubMed]

Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, “Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength,” Opt. Express 23(2), 739–746 (2015).
[Crossref] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
[Crossref] [PubMed]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S. Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22(13), 15639–15652 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S. Y. Lee, W. K. Loke, S. F. Yoon, and Y. C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, Y. Dong, S. Y. Lee, W. K. Loke, D. Lei, S. F. Yoon, G. Liang, X. Gong, and Y. C. Yeo, “Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range,” Opt. Express 25(16), 18502–18507 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (2)

Proc. SPIE (1)

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

Sci. Rep. (1)

Z. Liu, H. Cong, F. Yang, C. Li, J. Zheng, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “Defect-free high Sn-content GeSn on insulator grown by rapid melting growth,” Sci. Rep. 6(1), 38386 (2016).
[Crossref] [PubMed]

Science (2)

S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K. I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft microfluidic assemblies of sensors, circuits, and radios for the skin,” Science 344(6179), 70–74 (2014).
[Crossref] [PubMed]

W. Wu, X. Wen, and Z. L. Wang, “Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging,” Science 340(6135), 952–957 (2013).
[Crossref] [PubMed]

Other (9)

S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: material potential and technological outlook,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2012), pp. 95–96.
[Crossref]

M. Liu, G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, “Undoped Ge0.92Sn0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2014), pp. 100–101.

Y. S. Huang, C. H. Huang, F. L. Lu, C. Y. Lin, H. Y. Ye, I. H. Wong, S. R. Jan, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, C. P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” in Proceedings of IEEE International Electron Devices Meeting (IEEE, 2016), pp. 822–825.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2013), pp. 32–33.

V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J. M. Hartmann, K. T. Shiu, C. W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, and J. Fompeyrine, “An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 176–177.
[Crossref]

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 58–59.
[Crossref]

P. Hashemi, T. Ando, K. Balakrishnan, J. Bruley, S. Engelmann, J. A. Ott, V. Narayanan, D. G. Park, R. T. Mo, and E. Leobandung, “High-mobility high-Ge-content Si1-xGex-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~0.7, scaled EOT ~8.5 Å and ~10 nm fin width,” in Proceedings of IEEE Symposium on VLSI Technology (IEEE, 2015), pp. 16–17.

K. Thyagarajan and A. Ghatak, Fiber Optic Essentials (John Wiley & Sons, 2007).

P. C. Hobbs, Building Electro-optical Systems: Making it all Work (John Wiley & Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of a GeSn MSM photodetector and a MOSFET formed on GeSn-on-insulator platform. This illustration shows a way to monolithically integrate electronic and photonic devices on the same platform.
Fig. 2
Fig. 2 (a) Top-view SEM and (b) cross-sectional STEM images of a GeSn MSM photodetector cut across the AA’. The GSG contact pads were formed on SiO2. HRTEM images of (c) Al/Al2O3/Ge contact and (d) GeSn/SiO2 interface. Crystalline Ge and GeSn layer were formed on SiO2. A clear Al2O3 interlayer can be observed between Al and Ge. (e) Tilted-view SEM and (f) cross-sectional TEM image of a GeSn FinFET (Wfin = 30 nm) cut across the BB’. Well-defined GeSn fin structure can be observed. (g) HRTEM image shows crystalline GeSn fin on SiO2 with a smooth sidewall.
Fig. 3
Fig. 3 (a) Dark current was reduced by more than two orders of magnitude by inserting an Al2O3 interlayer between Al and Ge. (b) Dark current at various temperatures with and without Al2O3 interlayer. The ϕbh can be effectively increased with an Al2O3 interlayer.
Fig. 4
Fig. 4 (a) Photocurrent of the GeSn MSM photodetector with Al2O3 interlayer. The arrow points in the direction of increasing wavelengths from 1310 to 2003 nm. (b) Responsivity spectra of GeSn MSM photodetectors with and without Al2O3 interlayer.
Fig. 5
Fig. 5 RF measurement of the GeSn MSM photodetectors with and without Al2O3 under illumination at 2 μm. The 3-dB bandwidth of the GeSn MSM photodetector with Al2O3 was measured to be 1.4 GHz.
Fig. 6
Fig. 6 (a) ID-VG of a GeSn pFinFET with Wfin of 15 nm and Lch of 100 nm that exhibits S of 93 mV/decade at VDS of −0.05 V. (b) ID-VDS of the same device in (a) shows a drive current of 176 µA/µm at |VG-VTH| of 1 V and VDS of −1.2 V.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I dark = A p * T 2 exp( q φ bh kT ),
R=G( qλ hc )(1r)ζ[1exp( α λ d)],
NEP= (4kT/ R 0 +2q I dark ) R ,

Metrics