Abstract

Optical phase conjugation (OPC) can be applied to boost the performance of long-haul transmission by mitigating the impairments from fiber nonlinearity. Unfortunately, noticeable nonlinear noise in the conjugator for optical orthogonal frequency division multiplexing (OFDM) systems often degrades the signal quality. In this paper, we demonstrate nonlinear distortion mitigation in OPC by introducing backward Raman amplification to the conjugator. Raman amplification allows a lower input signal power, thus suppressing the OPC distortion while maintaining the conjugated output power. We investigate the performances of Raman-enhanced OPC in both back-to-back (BTB) and transmission systems with 3 × 25 Gbaud optical OFDM signals. In the BTB OPC system, Raman amplification boosts the tolerance to system nonlinearity, achieving a 3-dB improvement in the output power, a 2.4-dB improvement in the Q factor, and a 6-dB improvement in the input dynamic range. In the transmission system with Raman-enhanced OPC, the optimum launched power is increased by 2 dB and the maximum Q factor is increased by 0.4 dB compared to direct transmission. Similar performances are observed in all the wavelengths, indicating that our scheme works well with WDM transmission systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

Hao Hu, Robert M. Jopson, Alan H. Gnauck, Sebastian Randel, and S. Chandrasekhar
Opt. Express 25(3) 1618-1628 (2017)

Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation

Liang B. Du, Mohammad Monir Morshed, and Arthur J. Lowery
Opt. Express 20(18) 19921-19927 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Li, J. Yu, Z. Cao, M. Chen, J. Zhang, and X. Li, “Demostration of 520 Gb/s/λ pre-equalized DFT-spread PDM-16QAM-OFDM signal transmission,” Opt. Express 24(3), 2648–2654 (2016).
    [Crossref] [PubMed]
  2. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
    [Crossref] [PubMed]
  3. H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber Nonlinearity Compensation of an 8-channel WDM PDM-QPSK Signal using Multiple Phase Conjugations,” in Optical Fiber Communication Conference(2014), Paper M3C.2 (Optical Society of America, 2014), p. M3C.2.
    [Crossref]
  4. X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
    [Crossref]
  5. E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
    [Crossref] [PubMed]
  6. S. L. Olsson, B. Corcoran, C. Lundström, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified transmission links for improved sensitivity and nonlinearity tolerance,” J. Lightwave Technol. 33(3), 710–721 (2015).
    [Crossref]
  7. M. Morshed, L. B. Du, and A. J. Lowery, “Mid-span spectral inversion for coherent optical OFDM systems: Fundamental limits to performance,” J. Lightwave Technol. 31(1), 58–66 (2013).
    [Crossref]
  8. M. Morshed, A. J. Lowery, and L. B. Du, “Improving performance of optical phase conjugation by splitting the nonlinear element,” Opt. Express 21(4), 4567–4577 (2013).
    [Crossref] [PubMed]
  9. J. Y. Huh, Y. Takushima, and Y. C. Chung, “Fiber-based optical phase conjugation with Raman amplification,” in 2009 14th Opto Electronics and Communications Conference (2009), pp. 1–2.
    [Crossref]
  10. C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
    [Crossref]
  11. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  12. R. Elschner, T. Richter, and C. Schubert, “Characterization of FWM-Induced Crosstalk for WDM Operation of a Fiber-Optical Parametric Amplifier,” in 37th European Conference and Exposition on Optical Communications(2011), Paper Mo.1.A.2 (Optical Society of America, 2011), p. Mo.1.A.2.
    [Crossref]
  13. M. F. C. Stephens, M. Tan, I. D. Phillips, S. Sygletos, P. Harper, and N. J. Doran, “1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation,” Opt. Express 22(10), 11840–11848 (2014).
    [Crossref] [PubMed]
  14. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, “Kerr Nonlinearity Mitigation: Mid-Link Spectral Inversion Versus Digital Backpropagation in 5×28-GBd PDM 16-QAM Signal Transmission,” J. Lightwave Technol. 33(9), 1821–1827 (2015).
    [Crossref]
  15. I. Sackey, F. Da Ros, J. Karl Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, Impact of signal-conjugate wavelength shift on optical phase conjugation-based transmission of QAM signals,” in Proceedings of ECOC 2017, paper P1.SC4.66.

2016 (1)

2015 (4)

2014 (1)

2013 (3)

2008 (1)

2007 (1)

Alic, N.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Andrekson, P. A.

Ataie, V.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Bao, H.

Cao, Z.

Chandrasekhar, S.

X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Chen, M.

Chraplyvy, A.

X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Corcoran, B.

Doran, N. J.

Du, L. B.

Eriksson, T. A.

Fischer, J. K.

Guo, X.

C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
[Crossref]

Harper, P.

Huang, C.

C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
[Crossref]

Jazayerifar, M.

Karlsson, M.

Kuo, B.-P.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Li, F.

Li, M.

C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
[Crossref]

Li, X.

Liu, L.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Liu, X.

X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Lowery, A. J.

Lundström, C.

Morshed, M.

Myslivets, E.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Olsson, S. L.

Petermann, K.

Peucheret, C.

Phillips, I. D.

Radic, S.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Richter, T.

Ros, F. D.

Sackey, I.

Schubert, C.

Shieh, W.

Shu, C.

C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
[Crossref]

Stephens, M. F. C.

Sygletos, S.

Tan, M.

Tang, Y.

Temprana, E.

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Tkach, R.

X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Winzer, P.

X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Wu, Y.

C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
[Crossref]

Yu, J.

Zhang, J.

IEEE Photonics Technol. Lett. (1)

C. Huang, Y. Wu, X. Guo, M. Li, and C. Shu, “Improving the nonlinear tolerance of fiber-based optical phase conjugation,” IEEE Photonics Technol. Lett. 27(4), 439–442 (2015).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

X. Liu, A. Chraplyvy, P. Winzer, R. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Opt. Express (5)

Science (1)

E. Temprana, E. Myslivets, B.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Other (4)

H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber Nonlinearity Compensation of an 8-channel WDM PDM-QPSK Signal using Multiple Phase Conjugations,” in Optical Fiber Communication Conference(2014), Paper M3C.2 (Optical Society of America, 2014), p. M3C.2.
[Crossref]

J. Y. Huh, Y. Takushima, and Y. C. Chung, “Fiber-based optical phase conjugation with Raman amplification,” in 2009 14th Opto Electronics and Communications Conference (2009), pp. 1–2.
[Crossref]

R. Elschner, T. Richter, and C. Schubert, “Characterization of FWM-Induced Crosstalk for WDM Operation of a Fiber-Optical Parametric Amplifier,” in 37th European Conference and Exposition on Optical Communications(2011), Paper Mo.1.A.2 (Optical Society of America, 2011), p. Mo.1.A.2.
[Crossref]

I. Sackey, F. Da Ros, J. Karl Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, Impact of signal-conjugate wavelength shift on optical phase conjugation-based transmission of QAM signals,” in Proceedings of ECOC 2017, paper P1.SC4.66.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of back-to-back OPC module. CW: continuous wave; VOA, variable optical attenuation; HNLF: highly nonlinear fiber; LO: local oscillator; DSP: digital signal processing.
Fig. 2
Fig. 2 Q factor against the equivalent input power in conventional OPC (black square) and Raman-enhanced OPC (red circle) at the central channel (CH2).
Fig. 3
Fig. 3 Three system schemes under comparison: (a) direct transmission; (b) transmission with conventional OPC and Raman-enhanced OPC.
Fig. 4
Fig. 4 Comparison of the transmission results in direct transmission (blue triangle), conventional OPC (black square) and Raman-enhanced OPC transmission (red dot).
Fig. 5
Fig. 5 (a) WDM transmission performances at three wavelengths (b) corresponding constellation diagrams at CH2.

Tables (1)

Tables Icon

Table 1 Performance improvement in WDM channels

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P OPC = (γL) 2 P Pump 2 PSC,
P distortion =3 N SC 2 (γL) 4 P Pump 2 P SC 3 .
Q=10* log 10 | ( 1 EVM ) 2 |

Metrics