Abstract

Toluene laser-induced fluorescence (LIF) has been applied to image the mixing deficit on the molecular level in the transonic wake of two different blunt-body injectors in a compressible accelerated nozzle flow. A single-color excitation and two-color detection scheme is employed to measure the signal red-shift caused by the quenching effect of molecular oxygen on the fluorescence of toluene, which reduces and red-shifts the LIF signal if both substances interact on a molecular level. To this end, toluene is injected alternatingly with O2-contaning and O2-free carrier gas into the air main flow. Differences of both signals mark regions where mixing on molecular level is incomplete. A zone of molecular mixing deficit extending several millimeters in stream-wise direction is identified. The effect of local variations in temperature on the sensitivity of this technique is discussed using photo-physical data measured in a stationary low-temperature cell.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction

Tobias Rossmann, M. Godfrey Mungal, and Ronald K. Hanson
Appl. Opt. 42(33) 6682-6695 (2003)

Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine

Thomas Blotevogel, Matthias Hartmann, Hermann Rottengruber, and Alfred Leipertz
Appl. Opt. 47(35) 6488-6496 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Grzona, A. Weiß, H. Olivier, T. Gawehn, A. Gülhan, N. Al-Hasan, G. H. Schnerr, A. Abdali, M. Luong, H. Wiggers, C. Schulz, J. Chun, B. Weigand, T. Winnemöller, W. Schröder, T. Rakel, K. Schaber, V. Goertz, H. Nirschl, A. Maisels, W. Leibold, and M. Dannehl, “Gas-phase synthesis of non-agglomerated nanoparticles by fast gasdynamic heating and cooling,” (Springer Berlin Heidelberg, 2009), pp. 857–862.
  2. A. Wohler, K. Mohri, C. Schulz, and B. Weigand, “Flow structures in subsonic-to-supersonic mixing processes using different injector geometries,” in 4th European Conference for Aerospace Sciences (EUCASS, 2011).
  3. P. E. Dimotakis, “Turbulent Mixing,” Annu. Rev. Fluid Mech. 37(1), 329–356 (2005).
    [Crossref]
  4. C. Schulz and V. Sick, “Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31(1), 75–121 (2005).
    [Crossref]
  5. N. T. Clemens and P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7(5), 1071–1081 (1995).
    [Crossref]
  6. G. F. King, J. C. Dutton, and R. P. Lucht, “Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field,” Phys. Fluids 11(2), 403–416 (1999).
    [Crossref]
  7. W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B-Lasers O 74(1), 111–114 (2002).
    [Crossref]
  8. W. Koban and C. Schulz, “Toluene laser-induced fluorescence (LIF) under engine-telated pressures, temperatures and oxygen mole fractions,” SAE Technical Paper (2005).
  9. K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
    [Crossref]
  10. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
    [Crossref]
  11. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
    [Crossref]
  12. M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
    [Crossref]
  13. A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
    [Crossref]
  14. S. Faust, T. Dreier, and C. Schulz, “Photo-physical properties of anisole: temperature, pressure, and bath gas composition dependence of fluorescence spectra and lifetimes,” Appl. Phys. B 112(2), 203–213 (2013).
    [Crossref]
  15. S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
    [Crossref]
  16. M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using Toluene LIF,” J. Phys. Conf. Ser. 45, 133–139 (2006).
    [Crossref]
  17. T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
    [Crossref]
  18. J. Richter, J. Mayer, and B. Weigand, “Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow,” Appl. Phys. B-Lasers O, in press (2018).
  19. I. Wygnanski, F. Champagne, and B. Marasli, “On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes,” J. Fluid Mech. 168(-1), 31–71 (1986).
    [Crossref]
  20. M. Matsumoto, “Vortex shedding of bluff bodies: A review,” J. Fluids Structures 13(7-8), 791–811 (1999).
    [Crossref]
  21. F. Motallebi and J. F. Norbury, “The effect of base bleed on vortex shedding and base pressure in compressible flow,” J. Fluid Mech. 110(-1), 273–292 (2006).
    [Crossref]
  22. J. B. Birks, C. L. Braga, and M. D. Lumb, “‘Excimer’ Fluorescence. VI. Benzene, Toluene, p-Xylene and Mesitylene,” Proc. Royal Soc. London Series A 283(1392), 83–99 (1965).
    [Crossref]

2015 (2)

M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
[Crossref]

T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
[Crossref]

2014 (1)

A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
[Crossref]

2013 (2)

S. Faust, T. Dreier, and C. Schulz, “Photo-physical properties of anisole: temperature, pressure, and bath gas composition dependence of fluorescence spectra and lifetimes,” Appl. Phys. B 112(2), 203–213 (2013).
[Crossref]

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
[Crossref]

2011 (1)

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

2006 (2)

F. Motallebi and J. F. Norbury, “The effect of base bleed on vortex shedding and base pressure in compressible flow,” J. Fluid Mech. 110(-1), 273–292 (2006).
[Crossref]

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using Toluene LIF,” J. Phys. Conf. Ser. 45, 133–139 (2006).
[Crossref]

2005 (4)

P. E. Dimotakis, “Turbulent Mixing,” Annu. Rev. Fluid Mech. 37(1), 329–356 (2005).
[Crossref]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31(1), 75–121 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
[Crossref]

2002 (1)

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B-Lasers O 74(1), 111–114 (2002).
[Crossref]

1999 (2)

G. F. King, J. C. Dutton, and R. P. Lucht, “Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field,” Phys. Fluids 11(2), 403–416 (1999).
[Crossref]

M. Matsumoto, “Vortex shedding of bluff bodies: A review,” J. Fluids Structures 13(7-8), 791–811 (1999).
[Crossref]

1995 (1)

N. T. Clemens and P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7(5), 1071–1081 (1995).
[Crossref]

1986 (1)

I. Wygnanski, F. Champagne, and B. Marasli, “On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes,” J. Fluid Mech. 168(-1), 31–71 (1986).
[Crossref]

1965 (1)

J. B. Birks, C. L. Braga, and M. D. Lumb, “‘Excimer’ Fluorescence. VI. Benzene, Toluene, p-Xylene and Mesitylene,” Proc. Royal Soc. London Series A 283(1392), 83–99 (1965).
[Crossref]

Benzler, T.

T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
[Crossref]

Birks, J. B.

J. B. Birks, C. L. Braga, and M. D. Lumb, “‘Excimer’ Fluorescence. VI. Benzene, Toluene, p-Xylene and Mesitylene,” Proc. Royal Soc. London Series A 283(1392), 83–99 (1965).
[Crossref]

Braga, C. L.

J. B. Birks, C. L. Braga, and M. D. Lumb, “‘Excimer’ Fluorescence. VI. Benzene, Toluene, p-Xylene and Mesitylene,” Proc. Royal Soc. London Series A 283(1392), 83–99 (1965).
[Crossref]

Champagne, F.

I. Wygnanski, F. Champagne, and B. Marasli, “On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes,” J. Fluid Mech. 168(-1), 31–71 (1986).
[Crossref]

Clemens, N. T.

N. T. Clemens and P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7(5), 1071–1081 (1995).
[Crossref]

Dimotakis, P. E.

P. E. Dimotakis, “Turbulent Mixing,” Annu. Rev. Fluid Mech. 37(1), 329–356 (2005).
[Crossref]

Dreier, T.

T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
[Crossref]

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
[Crossref]

S. Faust, T. Dreier, and C. Schulz, “Photo-physical properties of anisole: temperature, pressure, and bath gas composition dependence of fluorescence spectra and lifetimes,” Appl. Phys. B 112(2), 203–213 (2013).
[Crossref]

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

Dutton, J. C.

G. F. King, J. C. Dutton, and R. P. Lucht, “Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field,” Phys. Fluids 11(2), 403–416 (1999).
[Crossref]

Faust, S.

T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
[Crossref]

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
[Crossref]

S. Faust, T. Dreier, and C. Schulz, “Photo-physical properties of anisole: temperature, pressure, and bath gas composition dependence of fluorescence spectra and lifetimes,” Appl. Phys. B 112(2), 203–213 (2013).
[Crossref]

Gamba, M.

M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
[Crossref]

Hanson, R. K.

M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
[Crossref]

King, G. F.

G. F. King, J. C. Dutton, and R. P. Lucht, “Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field,” Phys. Fluids 11(2), 403–416 (1999).
[Crossref]

Koban, W.

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using Toluene LIF,” J. Phys. Conf. Ser. 45, 133–139 (2006).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
[Crossref]

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B-Lasers O 74(1), 111–114 (2002).
[Crossref]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
[Crossref]

Lucht, R. P.

G. F. King, J. C. Dutton, and R. P. Lucht, “Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field,” Phys. Fluids 11(2), 403–416 (1999).
[Crossref]

Lumb, M. D.

J. B. Birks, C. L. Braga, and M. D. Lumb, “‘Excimer’ Fluorescence. VI. Benzene, Toluene, p-Xylene and Mesitylene,” Proc. Royal Soc. London Series A 283(1392), 83–99 (1965).
[Crossref]

Luong, M.

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using Toluene LIF,” J. Phys. Conf. Ser. 45, 133–139 (2006).
[Crossref]

Marasli, B.

I. Wygnanski, F. Champagne, and B. Marasli, “On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes,” J. Fluid Mech. 168(-1), 31–71 (1986).
[Crossref]

Matsumoto, M.

M. Matsumoto, “Vortex shedding of bluff bodies: A review,” J. Fluids Structures 13(7-8), 791–811 (1999).
[Crossref]

Mayer, J.

J. Richter, J. Mayer, and B. Weigand, “Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow,” Appl. Phys. B-Lasers O, in press (2018).

Miller, V. A.

M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
[Crossref]

Mohri, K.

A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
[Crossref]

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

Motallebi, F.

F. Motallebi and J. F. Norbury, “The effect of base bleed on vortex shedding and base pressure in compressible flow,” J. Fluid Mech. 110(-1), 273–292 (2006).
[Crossref]

Mungal, M. G.

M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
[Crossref]

Norbury, J. F.

F. Motallebi and J. F. Norbury, “The effect of base bleed on vortex shedding and base pressure in compressible flow,” J. Fluid Mech. 110(-1), 273–292 (2006).
[Crossref]

Paul, P. H.

N. T. Clemens and P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7(5), 1071–1081 (1995).
[Crossref]

Richter, J.

J. Richter, J. Mayer, and B. Weigand, “Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow,” Appl. Phys. B-Lasers O, in press (2018).

Schorr, J.

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B-Lasers O 74(1), 111–114 (2002).
[Crossref]

Schulz, C.

T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
[Crossref]

A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
[Crossref]

S. Faust, T. Dreier, and C. Schulz, “Photo-physical properties of anisole: temperature, pressure, and bath gas composition dependence of fluorescence spectra and lifetimes,” Appl. Phys. B 112(2), 203–213 (2013).
[Crossref]

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
[Crossref]

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using Toluene LIF,” J. Phys. Conf. Ser. 45, 133–139 (2006).
[Crossref]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31(1), 75–121 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
[Crossref]

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B-Lasers O 74(1), 111–114 (2002).
[Crossref]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31(1), 75–121 (2005).
[Crossref]

Tea, G.

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
[Crossref]

Vanhove, G.

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

Weigand, B.

A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
[Crossref]

J. Richter, J. Mayer, and B. Weigand, “Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow,” Appl. Phys. B-Lasers O, in press (2018).

Wohler, A.

A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
[Crossref]

Wygnanski, I.

I. Wygnanski, F. Champagne, and B. Marasli, “On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes,” J. Fluid Mech. 168(-1), 31–71 (1986).
[Crossref]

AIAA J. (1)

A. Wohler, B. Weigand, K. Mohri, and C. Schulz, “Mixing processes in a compressible accelerated nozzle flow with blunt-body wakes,” AIAA J. 52(3), 559–568 (2014).
[Crossref]

Annu. Rev. Fluid Mech. (1)

P. E. Dimotakis, “Turbulent Mixing,” Annu. Rev. Fluid Mech. 37(1), 329–356 (2005).
[Crossref]

Appl. Phys. B (2)

S. Faust, T. Dreier, and C. Schulz, “Photo-physical properties of anisole: temperature, pressure, and bath gas composition dependence of fluorescence spectra and lifetimes,” Appl. Phys. B 112(2), 203–213 (2013).
[Crossref]

T. Benzler, S. Faust, T. Dreier, and C. Schulz, “Low-pressure effective fluorescence lifetimes and photophysical rate constants of one- and two-ring aromatics,” Appl. Phys. B 121(4), 549–558 (2015).
[Crossref]

Appl. Phys. B-Lasers O (6)

S. Faust, G. Tea, T. Dreier, and C. Schulz, “Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene,” Appl. Phys. B-Lasers O 110(1), 81–93 (2013).
[Crossref]

K. Mohri, M. Luong, G. Vanhove, T. Dreier, and C. Schulz, “Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging,” Appl. Phys. B-Lasers O 103(3), 707–715 (2011).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B-Lasers O 80(6), 777–784 (2005).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B-Lasers O 80(2), 147–150 (2005).
[Crossref]

M. Gamba, V. A. Miller, M. G. Mungal, and R. K. Hanson, “Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry,” Appl. Phys. B-Lasers O 120(2), 285–304 (2015).
[Crossref]

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B-Lasers O 74(1), 111–114 (2002).
[Crossref]

J. Fluid Mech. (2)

I. Wygnanski, F. Champagne, and B. Marasli, “On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes,” J. Fluid Mech. 168(-1), 31–71 (1986).
[Crossref]

F. Motallebi and J. F. Norbury, “The effect of base bleed on vortex shedding and base pressure in compressible flow,” J. Fluid Mech. 110(-1), 273–292 (2006).
[Crossref]

J. Fluids Structures (1)

M. Matsumoto, “Vortex shedding of bluff bodies: A review,” J. Fluids Structures 13(7-8), 791–811 (1999).
[Crossref]

J. Phys. Conf. Ser. (1)

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using Toluene LIF,” J. Phys. Conf. Ser. 45, 133–139 (2006).
[Crossref]

Phys. Fluids (2)

N. T. Clemens and P. H. Paul, “Scalar measurements in compressible axisymmetric mixing layers,” Phys. Fluids 7(5), 1071–1081 (1995).
[Crossref]

G. F. King, J. C. Dutton, and R. P. Lucht, “Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field,” Phys. Fluids 11(2), 403–416 (1999).
[Crossref]

Proc. Royal Soc. London Series A (1)

J. B. Birks, C. L. Braga, and M. D. Lumb, “‘Excimer’ Fluorescence. VI. Benzene, Toluene, p-Xylene and Mesitylene,” Proc. Royal Soc. London Series A 283(1392), 83–99 (1965).
[Crossref]

Pror. Energy Combust. Sci. (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31(1), 75–121 (2005).
[Crossref]

Other (4)

A. Grzona, A. Weiß, H. Olivier, T. Gawehn, A. Gülhan, N. Al-Hasan, G. H. Schnerr, A. Abdali, M. Luong, H. Wiggers, C. Schulz, J. Chun, B. Weigand, T. Winnemöller, W. Schröder, T. Rakel, K. Schaber, V. Goertz, H. Nirschl, A. Maisels, W. Leibold, and M. Dannehl, “Gas-phase synthesis of non-agglomerated nanoparticles by fast gasdynamic heating and cooling,” (Springer Berlin Heidelberg, 2009), pp. 857–862.

A. Wohler, K. Mohri, C. Schulz, and B. Weigand, “Flow structures in subsonic-to-supersonic mixing processes using different injector geometries,” in 4th European Conference for Aerospace Sciences (EUCASS, 2011).

W. Koban and C. Schulz, “Toluene laser-induced fluorescence (LIF) under engine-telated pressures, temperatures and oxygen mole fractions,” SAE Technical Paper (2005).

J. Richter, J. Mayer, and B. Weigand, “Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent-divergent nozzle flow,” Appl. Phys. B-Lasers O, in press (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Toluene-LIF spectra at room temperature in N2 for a series of O2 partial pressures after excitation with 248 nm [10] and transmission curves of filters used in the present experiments. (b) Intensity ratios R (black symbols and line) and sensitivity (red line) of the two-color method.
Fig. 2
Fig. 2 Oxygen-dependence of ξ for the used filter pair calculated from LIF spectra obtained in a temperature-controlled static cell at atmospheric total pressure for different temperatures T within the range relevant for this paper.
Fig. 3
Fig. 3 (a) Cross-section of the nozzle module and (b) dimensions of the two injector types Inj A and Inj B. Both injectors extend in z-direction to the full channel width of 40 mm.
Fig. 4
Fig. 4 Adiabatic temperature distribution calculated from 1D adiabatic relations with respect to changes of the cross-section in stream-wise direction.
Fig. 5
Fig. 5 (a) Optical setup and light sheet positions within the nozzle with (b) injector A and (c) injector B.
Fig. 6
Fig. 6 Signal red-shift in the wake of injectors A and B after using alternatingly (a)-(b) air (homogeneous O2 concentration) and (c)-(d) N2 as carrier gas of the tracer flow, respectively. The surrounding flow is air in both cases, the grey boxes indicate the injector trailing edge position. (e)-(f) show the standard deviation of R and (g)-(h) show the standard deviation of S, each divided by the respective average value. Regions without sufficient signal (less than 20 counts/pixel in either LIF signal channel) were masked in all images S prior to the ratioing operations.
Fig. 7
Fig. 7 Averaged quotient ξ as a measure for the O2-induced red-shift and, thus, incomplete molecular mixing for (a) injector A and (b) injector B.
Fig. 8
Fig. 8 Profiles (extracted from Figs. 6(a)-6(d) and Fig. 7) of the O2-induced fluorescence red-shift represented by the quotient ξ (bottom) calculated from the averaged signal ratios R of both channels (top) for (a) injector A and (b) injector B along the centerline (y = 0 mm). The grey bands represent the standard deviation of ten 100-shot averages.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S I laser η n tracer σ(λ,T) ϕ(λ,T,p o 2 )
R= S red S blue = η red ϕ red (T,p o 2 ) η blue ϕ blue (T,p o 2 )
R= S red B G red S blue B G blue
ξ = R air R N 2

Metrics