Abstract

A quasi-distributed liquid leakage (QDLL) sensor in local area is proposed and experimentally demonstrated, providing a real-time yet low-cost method than the existing local QDLL sensor. The sensor mainly consists of a flexible lamp belt (FLB) with light-emitting diodes (LEDs) and a polymer optical fiber (POF) processed with side-coupling structures. The side-coupling structures are illuminated by the LEDs one by one, forming a series of sensing probes. The lights are side-coupled into the POF through the side-coupling structure and pulse sequences are obtained from the power meters connected to the both ends of the POF. Each pulse represents a sensing probe, and the intensity of them increase when the coupling medium changes from air to liquid. The location of the leakage incident can be got by the position of each pulse in its output sequence. The influence of different side-coupling structures on side-coupling ratio are investigated. The experiment results validate the detection and localization abilities of the QDLL sensor along a 1 m-long POF with a spatial resolution of 0.1 m, which can be improved by adjusting the side-coupling structure. Furthermore, the temperature dependence is studied and can be compensated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High spatial resolution distributed fiber strain sensor based on phase-OFDR

Jiong Li, Jiulin Gan, Zhishen Zhang, Xiaobo Heng, Changsheng Yang, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27913-27922 (2017)

Polymer optical fiber twisted macro-bend coupling system for liquid level detection

Yu-Long Hou, Wen-Yi Liu, Shan Su, Hui-Xin Zhang, Jia-Wei Zhang, Jun Liu, and Ji-Jun Xiong
Opt. Express 22(19) 23231-23241 (2014)

Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor

Seok-Beom Cho, Jung-Ju Lee, and Il-Bum Kwon
Opt. Express 12(18) 4339-4346 (2004)

References

  • View by:
  • |
  • |
  • |

  1. G. Xin, L. Zhengying, W. Fan, W. Yiming, W. Changjia, Z. Siyue, and Y. Haihu, “Distributed sensing technology of high-spatial resolution based on dense ultra-short fbg array with large multiplexing capacity,” Opt. Express 25(23), 28112–28122 (2017).
    [Crossref]
  2. A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors 16(5), 1424–8220 (2016).
    [Crossref]
  3. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).
  4. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
    [Crossref]
  5. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
    [Crossref]
  6. A. Motil, A. Bergman, and M. Tur, “state of the art of brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  7. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref]
  8. M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
    [Crossref]
  9. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
    [Crossref]
  10. Y. H. Kim and K. Y. Song, “Tailored pump compensation for brillouin optical time-domain analysis with distributed brillouin amplification,” Opt. Express 25(13), 14098–14105 (2017).
    [Crossref] [PubMed]
  11. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Lightwave Technol. 27(9), 1142–1146(2009).
    [Crossref]
  12. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in singlemode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  13. J. Nakayama, K. Iizuka, and J. Nielsen, “Optical fiber fault locator by the step frequency method,” Appl. Opt. 26(3), 440–443 (1987).
    [Crossref] [PubMed]
  14. R. Juškaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, “Distributed interferometric fiber sensor system,” Opt. Lett. 17(22), 1623–1625 (1992).
    [Crossref]
  15. R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19(8), 593–595 (1994).
    [Crossref] [PubMed]
  16. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref]
  17. M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
    [Crossref]
  18. K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
    [Crossref]
  19. M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
    [Crossref]
  20. M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
    [Crossref]
  21. Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).
  22. M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
    [Crossref]

2017 (3)

2016 (4)

M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
[Crossref]

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
[Crossref]

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors 16(5), 1424–8220 (2016).
[Crossref]

A. Motil, A. Bergman, and M. Tur, “state of the art of brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

2013 (1)

2012 (1)

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

2009 (3)

M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Lightwave Technol. 27(9), 1142–1146(2009).
[Crossref]

2006 (1)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

1998 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

1994 (2)

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
[Crossref]

R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19(8), 593–595 (1994).
[Crossref] [PubMed]

1992 (1)

1990 (1)

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
[Crossref]

1987 (1)

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in singlemode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Bals, A.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors 16(5), 1424–8220 (2016).
[Crossref]

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “state of the art of brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).

Bolognini, G.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Briffod, F.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors 16(5), 1424–8220 (2016).
[Crossref]

Changjia, W.

Chiu, W. K.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
[Crossref]

Cho, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).

Devarajan, M.

M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
[Crossref]

Dheepan, M. K.

M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
[Crossref]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in singlemode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Fan, W.

Froggatt, M.

Grosswig, S.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Haihu, Y.

Hogari, K.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
[Crossref]

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
[Crossref]

Huixin, Z.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Iizuka, K.

Imahama, M.

Ishihara, K.

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
[Crossref]

Jackson, D. A.

Jia, L.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Jing, G.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Juškaitis, R.

Kim, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Kim, Y. H.

Kodikara, J.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
[Crossref]

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Lightwave Technol. 27(9), 1142–1146(2009).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
[Crossref]

Kubota, K.

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
[Crossref]

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
[Crossref]

Lee, D.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Li, X.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Liang, Z.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Lim, K.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
[Crossref]

Liu, D.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Liu, H.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Luebbecke, S.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Mamedov, A. M.

Moore, J.

Motil, A.

A. Motil, A. Bergman, and M. Tur, “state of the art of brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Nakayama, J.

Nielsen, J.

Niklès, M.

M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Park, J.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Park, N.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pasquale, F. D.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pechstedt, R. D.

Pfeiffer, T.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Potapov, V. T.

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).

Qiu-lin, T.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Rathod, R.

Raypah, M. E.

M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
[Crossref]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).

Sauser, F.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Shatalin, S. V.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
[Crossref]

Siyue, Z.

Song, K. Y.

Soto, M. A.

Sulaiman, F.

M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
[Crossref]

Sun, Q.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
[Crossref]

Thévenaz, L.

Tur, M.

A. Motil, A. Bergman, and M. Tur, “state of the art of brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in singlemode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors 16(5), 1424–8220 (2016).
[Crossref]

Vogel, B.H.

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Wang, Z.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Webb, D. J.

Wenyi, L.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Wong, L.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
[Crossref]

Xin, G.

Yanjun, Z.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Yiming, W.

Yingzi, Z.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Yulong, H.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Zhang, M.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Zhengying, L.

Zhidong, Z.

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in singlemode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Appl. Therm. Eng. (1)

M. E. Raypah, M. K. Dheepan, M. Devarajan, and F. Sulaiman, “Investigation on thermal characterization of low power smd led mounted on different substrate packages,” Appl. Therm. Eng. 101, 1359–4311 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

J. Lightwave Technol. (4)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302(1995).
[Crossref]

M. Tateda, T. Horiguchi, T. Kurashima, and K. Ishihara, “First measurement of strain distribution along field-installed optical fibers using brillouin spectroscopy,” J. Lightwave Technol. 8(9), 1269–1272 (1990).
[Crossref]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne brillouin otdr for measurement of brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12(5), 730–736(1994).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Lightwave Technol. 27(9), 1142–1146(2009).
[Crossref]

Opt. Commun. (1)

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber bragg gratings multiplexing,” Opt. Commun. 285(13), 3082–3087 (2012).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “state of the art of brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

Sensors (2)

Z. Yingzi, H. Yulong, L. Wenyi, Z. Huixin, Z. Yanjun, Z. Zhidong, G. Jing, L. Jia, Z. Liang, and T. Qiu-lin, “A cost-effective relative humidity sensor based on side coupling induction technology,” Sensors 17(5), 1–9 (2017).

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors 16(5), 1424–8220 (2016).
[Crossref]

Struct. Control Hlth. (1)

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Control Hlth. 23(2), 303–314 (2016).
[Crossref]

Tech. Symp. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Temperature distribution measurement using raman ratio thermometry,” Tech. Symp. 7316(2), 731602 (2009).

Other (1)

M. Niklès, B.H. Vogel, F. Briffod, S. Grosswig, F. Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE5384, 18–25(2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram: (a) front view and (b) vertical view of the proposed sensor. Output pulse sequence corresponding to the leakage sensing probe of (c) the backward power meter and (d) the forward power meter.
Fig. 2
Fig. 2 Schematic diagram of the sensing probe with a single-structure imperfection.
Fig. 3
Fig. 3 Schematic diagram of the sensing probe with a multi-structure imperfection.
Fig. 4
Fig. 4 Experimental setup of the proposed QDLL sensor.
Fig. 5
Fig. 5 Liquid leakage response of the proposed sensor with different side-coupling structure: (a) backward power meter; (b) forward power meter.
Fig. 6
Fig. 6 Temperature dependence of the sensor with one multi-structure imperfection.
Fig. 7
Fig. 7 Liquid leakage response of the proposed QDLL sensor.

Tables (1)

Tables Icon

Table 1 Characteristics of the proposed sensors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ t 1 = n 2 n 3 sin θ i ,

Metrics