Abstract

In this paper, a method is proposed to implement noises reduced three-dimensional (3D) holographic near-eye display by phase-only computer-generated hologram (CGH). The CGH is calculated from a double-convergence light Gerchberg-Saxton (GS) algorithm, in which the phases of two virtual convergence lights are introduced into GS algorithm simultaneously. The first phase of convergence light is a replacement of random phase as the iterative initial value and the second phase of convergence light will modulate the phase distribution calculated by GS algorithm. Both simulations and experiments are carried out to verify the feasibility of the proposed method. The results indicate that this method can effectively reduce the noises in the reconstruction. Field of view (FOV) of the reconstructed image reaches 40 degrees and experimental light path in the 4-f system is shortened. As for 3D experiments, the results demonstrate that the proposed algorithm can present 3D images with 180cm zooming range and continuous depth cues. This method may provide a promising solution in future 3D augmented reality (AR) realization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm

Chenliang Chang, Jun Xia, Lei Yang, Wei Lei, Zhiming Yang, and Jianhong Chen
Appl. Opt. 54(23) 6994-7001 (2015)

Dynamic compensatory Gerchberg–Saxton algorithm for multiple-plane reconstruction in holographic displays

Pengcheng Zhou, Yan Li, Shuxin Liu, and Yikai Su
Opt. Express 27(6) 8958-8967 (2019)

3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display

Chien-Yu Chen, Wu-Chun Li, Hsuan-Ting Chang, Chih-Hao Chuang, and Tsung-Jan Chang
J. Opt. Soc. Am. B 34(5) B42-B48 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  2. I. Rabbi and S. Ullah, “A survey on augmented reality challenges and tracking,” Acta Graph. 24(1–2), 29–46 (2013).
  3. M. B. Spitzer, X. Miao, and B. Amirparviz, “Method and apparatus for a near-to-eye display,” U.S. Patent No. 8,767,305. 1 Jul. (2014).
  4. H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).
  5. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  6. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
    [Crossref]
  7. H. Takahashi and S. Hideya, “Stereoscopic see-through retinal projection head-mounted display,” Proc. SPIE 6803, 68031N (2008).
    [Crossref]
  8. F. Zeng and X. Zhang, “Waveguide holographic head-mounted display technology,” Chinese Optics 7(5), 731–738 (2014).
    [Crossref]
  9. H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref] [PubMed]
  10. S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
    [Crossref]
  11. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  12. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54(23), 6994–7001 (2015).
    [Crossref] [PubMed]
  13. Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
    [Crossref] [PubMed]
  14. C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
    [Crossref] [PubMed]
  15. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(1), 1–16 (2017).
    [Crossref]
  16. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [Crossref] [PubMed]
  17. J. Hong, S. W. Min, and B. Lee, “Integral floating display systems for augmented reality,” Appl. Opt. 51(18), 4201–4209 (2012).
    [Crossref] [PubMed]
  18. C. K. Lee, S. Moon, S. Lee, D. Yoo, J. Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
    [Crossref] [PubMed]
  19. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  20. T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
    [Crossref] [PubMed]
  21. M. Makowski, T. Shimobaba, and T. Ito, “Increased depth of focus in random-phase-free holographic projection,” Chin. Opt. Lett. 14(12), 120901 (2016).
    [Crossref]
  22. Y. Jie, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Wuli Xuebao 58(5), 22409–22417 (2009).
  23. T. Nobukawa and T. Nomura, “Multilayer recording holographic data storage using a varifocal lens generated with a kinoform,” Opt. Lett. 40(23), 5419–5422 (2015).
    [Crossref] [PubMed]
  24. G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.
  25. H. Wang, N. Chen, S. Zheng, J. Liu, and G. Situ, “Fast and high-resolution light field acquisition using defocus modulation,” Appl. Opt. 57(1), A250–A256 (2018).
    [Crossref] [PubMed]
  26. Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1–5 (2012).
  27. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
    [Crossref] [PubMed]
  28. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref] [PubMed]
  29. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  30. P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love, and M. S. Banks, “Dynamic lens and monovision 3D displays to improve viewer comfort,” Opt. Express 24(11), 11808–11827 (2016).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref] [PubMed]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(1), 1–16 (2017).
[Crossref]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (4)

2014 (3)

2013 (1)

I. Rabbi and S. Ullah, “A survey on augmented reality challenges and tracking,” Acta Graph. 24(1–2), 29–46 (2013).

2012 (4)

H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

J. Hong, S. W. Min, and B. Lee, “Integral floating display systems for augmented reality,” Appl. Opt. 51(18), 4201–4209 (2012).
[Crossref] [PubMed]

Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1–5 (2012).

2011 (2)

J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

2009 (1)

Y. Jie, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Wuli Xuebao 58(5), 22409–22417 (2009).

2008 (2)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

H. Takahashi and S. Hideya, “Stereoscopic see-through retinal projection head-mounted display,” Proc. SPIE 6803, 68031N (2008).
[Crossref]

2005 (1)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Al-Najjar, Y.

Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1–5 (2012).

Anisetti, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Banks, M. S.

P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love, and M. S. Banks, “Dynamic lens and monovision 3D displays to improve viewer comfort,” Opt. Express 24(11), 11808–11827 (2016).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chang, C.

Chen, J.

Chen, N.

Choi, H. J.

Damiani, E.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Duan, X.

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Furht, B.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Gao, Q.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(1), 1–16 (2017).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Gigain, S.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Hahn, J.

Hideya, S.

H. Takahashi and S. Hideya, “Stereoscopic see-through retinal projection head-mounted display,” Proc. SPIE 6803, 68031N (2008).
[Crossref]

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Hong, J.

Hong, J. Y.

Hua, H.

Ito, T.

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Javidi, B.

Ji, Y. M.

Jie, Y.

Y. Jie, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Wuli Xuebao 58(5), 22409–22417 (2009).

Johnson, P. V.

Jones, P. H.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

Kim, H.

Kim, H. J.

Kim, J.

Kim, M.

Kim, S. B.

Kim, S. H.

Kim, Y.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(1), 1–16 (2017).
[Crossref]

Lanman, D.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Lee, B.

Lee, C. K.

Lee, S.

Lei, W.

Li, B.

Li, H.

H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).

Li, X.

Liu, H.

H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).

Liu, J.

Liu, P.

Liu, S.

S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
[Crossref]

Liu, X.

H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).

Love, G. D.

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(1), 1–16 (2017).
[Crossref]

Makowski, M.

Marago, O. M.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

Min, S. W.

Moon, E.

Moon, S.

Nie, S.

Nobukawa, T.

Nomura, T.

Park, J. H.

Parnell, J. A.

Pesce, G.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

Qi, Y.

Rabbi, I.

I. Rabbi and S. Ullah, “A survey on augmented reality challenges and tracking,” Acta Graph. 24(1–2), 29–46 (2013).

Raskar, R.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Roh, J.

Sasso, A.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

Saunter, C. D.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Shimobaba, T.

Situ, G.

Sun, P.

S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
[Crossref]

Takahashi, H.

H. Takahashi and S. Hideya, “Stereoscopic see-through retinal projection head-mounted display,” Proc. SPIE 6803, 68031N (2008).
[Crossref]

Ullah, S.

I. Rabbi and S. Ullah, “A survey on augmented reality challenges and tracking,” Acta Graph. 24(1–2), 29–46 (2013).

Volpe, G.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

Wang, C.

S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
[Crossref]

Wang, H.

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Wetzstein, G.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Wu, J.

Xia, J.

Yang, L.

Yang, Z.

Yeom, H. J.

Yoo, D.

Zeng, F.

F. Zeng and X. Zhang, “Waveguide holographic head-mounted display technology,” Chinese Optics 7(5), 731–738 (2014).
[Crossref]

Zhang, H.

Zhang, X.

F. Zeng and X. Zhang, “Waveguide holographic head-mounted display technology,” Chinese Optics 7(5), 731–738 (2014).
[Crossref]

Zhao, T.

Zheng, S.

Zheng, Z.

S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
[Crossref]

H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).

ACM Trans. Graph. (2)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(1), 1–16 (2017).
[Crossref]

Acta Graph. (1)

I. Rabbi and S. Ullah, “A survey on augmented reality challenges and tracking,” Acta Graph. 24(1–2), 29–46 (2013).

Appl. Opt. (4)

Chin. Opt. Lett. (1)

Chinese Optics (1)

F. Zeng and X. Zhang, “Waveguide holographic head-mounted display technology,” Chinese Optics 7(5), 731–738 (2014).
[Crossref]

Guangdian Gongcheng (1)

H. Liu, Z. Zheng, H. Li, and X. Liu, “Design of Planar Display Based on Transparent Film Array,” Guangdian Gongcheng 39(5), 145–150 (2012).

Int. J. Sci. Eng. Res. (1)

Y. Al-Najjar, “Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI,” Int. J. Sci. Eng. Res. 3, 1–5 (2012).

J. Vis. (2)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, system and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Opt. Commun. (1)

S. Liu, P. Sun, C. Wang, and Z. Zheng, “Color waveguide transparent screen using lens array holographic optical element,” Opt. Commun. 403, 376–380 (2017).
[Crossref]

Opt. Express (9)

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
[Crossref] [PubMed]

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
[Crossref] [PubMed]

C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Speckle reduced lensless holographic projection from phase-only computer-generated hologram,” Opt. Express 25(6), 6568–6580 (2017).
[Crossref] [PubMed]

C. K. Lee, S. Moon, S. Lee, D. Yoo, J. Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “Random phase-free computer-generated hologram,” Opt. Express 23(7), 9549–9554 (2015).
[Crossref] [PubMed]

P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love, and M. S. Banks, “Dynamic lens and monovision 3D displays to improve viewer comfort,” Opt. Express 24(11), 11808–11827 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Proc. SPIE (1)

H. Takahashi and S. Hideya, “Stereoscopic see-through retinal projection head-mounted display,” Proc. SPIE 6803, 68031N (2008).
[Crossref]

Wuli Xuebao (1)

Y. Jie, “Optimization of optoelectronic reconstruction of phase hologram by use of digital blazed grating,” Wuli Xuebao 58(5), 22409–22417 (2009).

Other (2)

G. Pesce, G. Volpe, O. M. Marago, P. H. Jones, S. Gigain, A. Sasso, and G. Volpe, “A step–by–step guide to the realisation of advanced optical tweezers,” J. Opt. Soc. Am. B. in press.

M. B. Spitzer, X. Miao, and B. Amirparviz, “Method and apparatus for a near-to-eye display,” U.S. Patent No. 8,767,305. 1 Jul. (2014).

Supplementary Material (1)

NameDescription
» Visualization 1       Experimental results of 3D holographic display at different depths

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 CGH with the first virtual convergence light.
Fig. 2
Fig. 2 Optical design for the second convergence light.
Fig. 3
Fig. 3 Computer simulation results. (a) The original image. (b) CGH calculated by GS algorithm with traditional random phase. (c) Image reconstructed from Fig. 3(b). (d) CGH calculated by DCL-GS algorithm with phase of virtual convergence light. (e) Image reconstructed from Fig. 3(d).
Fig. 4
Fig. 4 Comparison of image quality between GS algorithm and DCL-GS algorithm. (a) Results of PSNR in 15 iteration numbers. (b) Results of SSIM in 15 iteration numbers.
Fig. 5
Fig. 5 Schematic of experimental setup.
Fig. 6
Fig. 6 (a)-(c) The original images (“cock”, “horse” and “bull”). (d)-(l) Optical reconstructions of original images taken from white board by camera (image size is 8cm × 4.5cm). (d)-(f) images reconstructed from CGH calculated by GS algorithm with the first convergence light. (g)-(i) images reconstructed from CGH calculated by DCL-GS algorithm, and received 500mm, 400mm, 350mm behind lens 1 respectively. (j)-(l) images reconstructed from CGH calculated by DCL-GS algorithm with a filter.
Fig. 7
Fig. 7 Optical reconstructions of different FOV in near-eye display. (a) The focal length f1, f2 of lens 1 and lens 2 are 250mm and 200mm respectively, the maximum image size L is 5.2cm, and the distance d between white board and camera is 62.3cm. (b) f1 = 250mm, f2 = 100mm, L = 4.9cm, d = 36.5cm. (c) f1 = 400mm, f2 = 100mm, L = 10.2cm, d = 33.5cm. (d) Beam splitter is removed and f1 = 400mm, f2 = 45mm, L = 24.7cm, d = 33.5cm.
Fig. 8
Fig. 8 Experimental results of 3D holographic display at different depths (Visualization 1). (a) The original 3D image with four characters at different depths. (b)-(e) are the focused images at 24.5cm, 43.8cm, 84.7cm, 195.1cm respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

w 1 ( x 1 , y 1 ) = exp ( i π ( x 1 2 + y 1 2 ) λ r 1 )
φ b g ( x 1 , y 1 ) = 2 π T mod ( b x 1 + c y 1 , T )
Δ z = f 1 2 r 2 z + f 1 .
P S N R ( x , y ) = 10 log 255 2 M S E ( x , y )
M S E ( x , y ) = 1 M N i = 1 M j = 1 N e ( i , j ) 2
S S I M ( x , y ) = ( 2 μ x μ y + c 1 ) ( 2 σ x y + c 2 ) ( μ x 2 + μ y 2 + c 1 ) ( σ x 2 + σ y 2 + c 2 )
θ = 2 tan ( L 2 d )

Metrics