Abstract

The average intensity, as well as the intensity-intensity correlation at one and two points of the He-Ne laser beam passing in the monostatic double-passage (21 meter long in single pass) atmospheric channel with a retro-reflector are measured experimentally. The non-classic turbulence is generated in two different ways: by means of a 1.8-meter long turbulent chamber with 3D distributed non-classic turbulence and a localized hot air jet-stream applied to the beam in a transverse direction. The Enhanced Back Scatterer (EBS) effects produced by the two types of turbulence are compared as turbulence is placed at various locations along the channel. The data reveals the spatial stability of the EBS intensity in the detected beam in both cases, while the whole beam centroid generally appears to be off-centered, due to deterministic and random temperature gradients. The strongest EBS effect was observed with the localized turbulence placed close to the retro-reflector. The studied situations may appear in urban/industrial/coastal atmosphere and are of importance for free-space optical communications with retro-modulation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links

Rita Mahon, Christopher I. Moore, Mike Ferraro, William S. Rabinovich, and Michele R. Suite
Appl. Opt. 51(25) 6147-6158 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. D. Eckhardt, “Simple model of corner reflector phenomena,” Appl. Opt. 10(7), 1559–1566 (1971).
    [Crossref] [PubMed]
  2. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10(7), 1652–1658 (1971).
    [Crossref] [PubMed]
  3. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61(4), 492–495 (1971).
    [Crossref]
  4. M. S. Belen’kii and V. L. Mironov, “Diffraction of optical radiation on a mirror disc in a turbulent atmosphere,” Quantum Electron. 5(11), 38–45 (1972).
  5. A. S. Gurvich and S. S. Kashkarov, “Enhanced backscattering in a turbulent medium,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 20, 794–796 (1977).
  6. J. L. Bufton, “Scintillation statistics measured in an earth-space-earth retroreflector link,” Appl. Opt. 16(10), 2654–2660 (1977).
    [Crossref] [PubMed]
  7. J. L. Bufton, R. S. Iyer, and L. S. Taylor, “Scintillation statistics caused by atmospheric turbulence and speckle in satellite laser ranging,” Appl. Opt. 16(9), 2408–2413 (1977).
    [Crossref] [PubMed]
  8. S. S. Kashkarov, “Enhancement of the average backscattered intensity in a turbulent atmosphere,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 26, 44–48 (1983).
  9. G. Y. Patrushev, A. I. Petrov, and V. V. Pokasov, “Intensity fluctuations upon specular reflection of optical beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 26(7), 612–619 (1983).
    [Crossref]
  10. L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36(3), 698–708 (1997).
    [Crossref] [PubMed]
  11. L. C. Andrews, R. L. Phillips, and A. R. Weeks, “Rytov approximation of the irradiance covariance and variance of a retroreflected optical beam in atmospheric turbulence,” J. Opt. Soc. Am. A 14(8), 1938–1948 (1997).
    [Crossref]
  12. L. C. Andrews and R. L. Phillips, “Monostatic lidar in weak-to-strong turbulence,” Waves Random Media 11(3), 233–245 (2001).
    [Crossref]
  13. A. Masino and C. Young, “Double pass wave structure function in weak to strong optical turbulence,” Waves Random Media 15(3), 71–89 (2005).
    [Crossref]
  14. J. H. Shapiro and A. L. Puryear, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part I: reciprocity proofs and far-field power transfer optimization,” J. Opt. Commun. Netw. 4(12), 947–954 (2012).
    [Crossref]
  15. A. L. Puryear, J. H. Shapiro, and R. R. Parenti, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part II: communication architectures and performance,” J. Opt. Commun. Netw. 5(8), 888–900 (2013).
    [Crossref]
  16. C. Chen and H. Yang, “Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence,” Opt. Express 25(11), 12779–12795 (2017).
    [Crossref] [PubMed]
  17. V. A. Banakh and V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech, 1987).
  18. Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, “Enhanced backscattering in optics,” in Progress in Optics XXIX, E. Wolf, ed. (Elsevier, 1991).
  19. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  20. L. C. Andrews and R. L. Phillips, Laser Beam Propagation in Random Media, 2nd ed. (SPIE, 2005).
  21. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  22. O. Korotkova, Partially Coherent Beam Propagation in Turbulent Atmosphere with Applications (VDM, 2009).
  23. S. S. Kashkarov, T. N. Nesterova, and A. S. Smirnov, “Light intensity fluctuations in backscatter from a turbulent medium,” Radiophys. Quantum Electron. 27(10), 890–894 (1984).
    [Crossref]
  24. P. R. Tapster, A. R. Weeks, and E. Jakeman, “Observation of backscattering enhancement through atmospheric phase screens,” J. Opt. Soc. Am. A 6(4), 517–522 (1989).
    [Crossref]
  25. A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
    [Crossref]
  26. J. H. Churnside and J. J. Wilson, “Enhanced backscatter of a reflected beam in atmospheric turbulence,” Appl. Opt. 32(15), 2651–2655 (1993).
    [Crossref] [PubMed]
  27. R. Mahon, C. I. Moore, H. R. Burris, M. Ferraro, W. S. Rabinovich, M. Suite, and L. M. Thomas, “Probability density of irradiance fluctuations observed over terrestrial ranges,” Appl. Opt. 50(35), 6476–6483 (2011).
    [Crossref] [PubMed]
  28. W. Nelson, J. P. Palastro, C. Wu, and C. C. Davis, “Enhanced backscatter of optical beams reflected in turbulent air,” J. Opt. Soc. Am. A 32(7), 1371–1378 (2015).
    [Crossref] [PubMed]
  29. E. Jakeman, “Enhanced backscattering through a deep random phase screen,” J. Opt. Soc. Am. A 5(10), 1638–1648 (1988).
    [Crossref]
  30. G. Welch and R. Phillips, “Simulation of enhanced backscatter by a phase screen,” J. Opt. Soc. Am. A 7(4), 578–584 (1990).
    [Crossref]
  31. D. H. Nelson, D. L. Walters, E. P. Mackerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, and R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39(12), 1857–1871 (2000).
    [Crossref] [PubMed]
  32. G. Yang, S. You, M. Bi, B. Fan, Y. Lu, X. Zhou, J. Li, H. Geng, and T. Wang, “Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector,” Appl. Opt. 56(26), 7474–7483 (2017).
    [Crossref] [PubMed]
  33. J. C. Wyngaard, Y. Izumi, and S. A. Collins, “Behavior of the refractive-index-structure parameter near the ground,” J. Opt. Soc. Am. 61(12), 1646–1650 (1971).
    [Crossref]
  34. Z. Yang and M. A. Vorontsov, “Numerical analysis of mirage-image formation in presence of atmospheric turbulence and refractive gradient layer,” in Imaging and Applied Optics Conference, Vol. PM4C of 2015 Imaging Through Turbulence Series (Optical Society of America, 2015), paper PM4C.4.
    [Crossref]
  35. A. McDaniel and A. Mahalov, “Lensing effects in a random inhomogeneous medium,” Opt. Express 25(23), 28157–28166 (2017).
    [Crossref]
  36. C. B. Hogge and W. L. Visinsky, “Laser beam probing of jet exhaust turbulence,” Appl. Opt. 10(4), 889–892 (1971).
    [Crossref] [PubMed]
  37. J. L. Barrett and P. A. Budni, “Laser beam propagation through strong turbulence,” J. Appl. Phys. 71(3), 1124–1127 (1992).
    [Crossref]
  38. D. I. Dmitriev, Y. N. Evchenko, I. V. Ivanova, and V. S. Sirazetdinov, “Multiframe recording of laser radiation distorted by a turbulent jet from an aircraft,” J. Opt. Technol. 68(6), 378–382 (2001).
    [Crossref]
  39. V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).
  40. V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).
  41. V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).
  42. V. S. Sirazetdinov, “Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet,” Appl. Opt. 47(7), 975–985 (2008).
    [Crossref] [PubMed]
  43. L. Sjöqvist, “Laser beam propagation in jet engine plume environments: a review,” Proc. SPIE 7115, 71150C (2008).
    [Crossref]
  44. A. Mahalov and M. Moustaoui, “Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere,” J. Comput. Phys. 228(4), 1294–1311 (2009).
    [Crossref]
  45. A. Mahalov and M. Moustaoui, “Characterization of atmospheric optical turbulence for laser propagation,” Laser Photonics Rev. 4(1), 144–159 (2010).
    [Crossref]
  46. O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves Random Media 19(4), 692–702 (2009).
    [Crossref]
  47. L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12(3), 233–242 (2003).
    [Crossref]
  48. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
    [Crossref]
  49. E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
    [Crossref]
  50. M. Achour, “Free-space optical communication by retro-modulation: Concept, technologies and challenges,” Proc. SPIE 5614, 52–63 (2004).
    [Crossref]
  51. N. Perlot and D. Giggenbach, “Scintillation correlation between forward and return spherical waves,” Appl. Opt. 51(15), 2888–2893 (2012).
    [Crossref] [PubMed]
  52. J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
    [Crossref]
  53. W. S. Rabinovich, R. Mahon, M. Ferraro, P. G. Goetz, and J. L. Murphy, “Reduction of scintillation in optical modulating retro-reflector links,” Opt. Express 22(23), 28553–28565 (2014).
    [Crossref] [PubMed]
  54. D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Lett. 39(13), 3950–3953 (2014).
    [Crossref] [PubMed]
  55. R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, J. Murphy, and W. S. Rabinovich, “Irradiance correlations in retro-reflected beams,” Appl. Opt. 54(31), F96–F102 (2015).
    [Crossref] [PubMed]
  56. C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).
  57. G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
    [Crossref]
  58. F. Wang, I. Toselli, J. Li, and O. Korotkova, “Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light,” Opt. Lett. 42(6), 1129–1132 (2017).
    [Crossref] [PubMed]
  59. F. Wang, I. Toselli, J. Li, and O. Korotkova, “Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations,” in Aerospace Conference (IEEE, 2017).
    [Crossref]
  60. G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
    [Crossref]
  61. M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
    [Crossref]
  62. C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
    [Crossref]
  63. I. Toselli, F. Wang, and O. Korotkova, “Controlled simulation of optical turbulence in a temperature gradient air chamber,” Proc. SPIE 9833, 98330C (2016).
    [Crossref]

2017 (5)

2016 (1)

I. Toselli, F. Wang, and O. Korotkova, “Controlled simulation of optical turbulence in a temperature gradient air chamber,” Proc. SPIE 9833, 98330C (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (2)

A. L. Puryear, J. H. Shapiro, and R. R. Parenti, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part II: communication architectures and performance,” J. Opt. Commun. Netw. 5(8), 888–900 (2013).
[Crossref]

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
[Crossref]

2012 (3)

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

N. Perlot and D. Giggenbach, “Scintillation correlation between forward and return spherical waves,” Appl. Opt. 51(15), 2888–2893 (2012).
[Crossref] [PubMed]

J. H. Shapiro and A. L. Puryear, “Reciprocity-enhanced optical communication through atmospheric turbulence—Part I: reciprocity proofs and far-field power transfer optimization,” J. Opt. Commun. Netw. 4(12), 947–954 (2012).
[Crossref]

2011 (1)

2010 (1)

A. Mahalov and M. Moustaoui, “Characterization of atmospheric optical turbulence for laser propagation,” Laser Photonics Rev. 4(1), 144–159 (2010).
[Crossref]

2009 (2)

O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves Random Media 19(4), 692–702 (2009).
[Crossref]

A. Mahalov and M. Moustaoui, “Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere,” J. Comput. Phys. 228(4), 1294–1311 (2009).
[Crossref]

2008 (2)

2005 (2)

A. Masino and C. Young, “Double pass wave structure function in weak to strong optical turbulence,” Waves Random Media 15(3), 71–89 (2005).
[Crossref]

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

2004 (2)

M. Achour, “Free-space optical communication by retro-modulation: Concept, technologies and challenges,” Proc. SPIE 5614, 52–63 (2004).
[Crossref]

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).

2003 (2)

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12(3), 233–242 (2003).
[Crossref]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

2001 (4)

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).

L. C. Andrews and R. L. Phillips, “Monostatic lidar in weak-to-strong turbulence,” Waves Random Media 11(3), 233–245 (2001).
[Crossref]

D. I. Dmitriev, Y. N. Evchenko, I. V. Ivanova, and V. S. Sirazetdinov, “Multiframe recording of laser radiation distorted by a turbulent jet from an aircraft,” J. Opt. Technol. 68(6), 378–382 (2001).
[Crossref]

2000 (1)

1999 (1)

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

1997 (2)

1993 (1)

1992 (2)

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

J. L. Barrett and P. A. Budni, “Laser beam propagation through strong turbulence,” J. Appl. Phys. 71(3), 1124–1127 (1992).
[Crossref]

1991 (1)

A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
[Crossref]

1990 (1)

1989 (1)

1988 (1)

1984 (1)

S. S. Kashkarov, T. N. Nesterova, and A. S. Smirnov, “Light intensity fluctuations in backscatter from a turbulent medium,” Radiophys. Quantum Electron. 27(10), 890–894 (1984).
[Crossref]

1983 (2)

S. S. Kashkarov, “Enhancement of the average backscattered intensity in a turbulent atmosphere,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 26, 44–48 (1983).

G. Y. Patrushev, A. I. Petrov, and V. V. Pokasov, “Intensity fluctuations upon specular reflection of optical beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 26(7), 612–619 (1983).
[Crossref]

1977 (3)

1972 (1)

M. S. Belen’kii and V. L. Mironov, “Diffraction of optical radiation on a mirror disc in a turbulent atmosphere,” Quantum Electron. 5(11), 38–45 (1972).

1971 (5)

Achour, M.

M. Achour, “Free-space optical communication by retro-modulation: Concept, technologies and challenges,” Proc. SPIE 5614, 52–63 (2004).
[Crossref]

Ågren, D.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Allard, L.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Andrews, L. C.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

L. C. Andrews and R. L. Phillips, “Monostatic lidar in weak-to-strong turbulence,” Waves Random Media 11(3), 233–245 (2001).
[Crossref]

L. C. Andrews, R. L. Phillips, and A. R. Weeks, “Rytov approximation of the irradiance covariance and variance of a retroreflected optical beam in atmospheric turbulence,” J. Opt. Soc. Am. A 14(8), 1938–1948 (1997).
[Crossref]

L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36(3), 698–708 (1997).
[Crossref] [PubMed]

Avramov-Zamurovic, S.

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

Barchers, J. D.

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

Barrett, J. L.

J. L. Barrett and P. A. Budni, “Laser beam propagation through strong turbulence,” J. Appl. Phys. 71(3), 1124–1127 (1992).
[Crossref]

Belen’kii, M. S.

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

M. S. Belen’kii and V. L. Mironov, “Diffraction of optical radiation on a mirror disc in a turbulent atmosphere,” Quantum Electron. 5(11), 38–45 (1972).

Belichki, S. B.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

Bi, M.

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

G. Yang, S. You, M. Bi, B. Fan, Y. Lu, X. Zhou, J. Li, H. Geng, and T. Wang, “Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector,” Appl. Opt. 56(26), 7474–7483 (2017).
[Crossref] [PubMed]

Bogaturov, A. N.

A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
[Crossref]

Brown, J. M.

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

Budni, P. A.

J. L. Barrett and P. A. Budni, “Laser beam propagation through strong turbulence,” J. Appl. Phys. 71(3), 1124–1127 (1992).
[Crossref]

Bufton, J. L.

Burris, H. R.

Chen, C.

Churnside, J. H.

Cochrell, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Coffaro, J. T.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

Collins, S. A.

Davidson, F.

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

Davis, C. C.

Dmitriev, D. I.

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).

D. I. Dmitriev, Y. N. Evchenko, I. V. Ivanova, and V. S. Sirazetdinov, “Multiframe recording of laser radiation distorted by a turbulent jet from an aircraft,” J. Opt. Technol. 68(6), 378–382 (2001).
[Crossref]

Dolfi, D.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
[Crossref]

Du, P.

Eckhardt, H. D.

Engström, D.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Evchenko, Y. N.

Fan, B.

Farwell, N.

O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves Random Media 19(4), 692–702 (2009).
[Crossref]

Ferraro, M.

Ferraro, M. S.

Fugate, R. Q.

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

Gao, G.

Geng, D.

Geng, H.

Giggenbach, D.

Gilbreath, G. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Goetz, P. G.

R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, J. Murphy, and W. S. Rabinovich, “Irradiance correlations in retro-reflected beams,” Appl. Opt. 54(31), F96–F102 (2015).
[Crossref] [PubMed]

W. S. Rabinovich, R. Mahon, M. Ferraro, P. G. Goetz, and J. L. Murphy, “Reduction of scintillation in optical modulating retro-reflector links,” Opt. Express 22(23), 28553–28565 (2014).
[Crossref] [PubMed]

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Gong, M.

Grechko, G. M.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

Gurvich, A. S.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
[Crossref]

A. S. Gurvich and S. S. Kashkarov, “Enhanced backscattering in a turbulent medium,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 20, 794–796 (1977).

Hällstig, E.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Hård, S.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Hogge, C. B.

Ivanova, I. V.

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).

D. I. Dmitriev, Y. N. Evchenko, I. V. Ivanova, and V. S. Sirazetdinov, “Multiframe recording of laser radiation distorted by a turbulent jet from an aircraft,” J. Opt. Technol. 68(6), 378–382 (2001).
[Crossref]

Iyer, R. S.

Izumi, Y.

Jakeman, E.

Junique, S.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Kahn, J. M.

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12(3), 233–242 (2003).
[Crossref]

Kan, V.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

Karis, S. J.

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

Kashkarov, S. S.

A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
[Crossref]

S. S. Kashkarov, T. N. Nesterova, and A. S. Smirnov, “Light intensity fluctuations in backscatter from a turbulent medium,” Radiophys. Quantum Electron. 27(10), 890–894 (1984).
[Crossref]

S. S. Kashkarov, “Enhancement of the average backscattered intensity in a turbulent atmosphere,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 26, 44–48 (1983).

A. S. Gurvich and S. S. Kashkarov, “Enhanced backscattering in a turbulent medium,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 20, 794–796 (1977).

Kireev, S. V.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

Korotkova, O.

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light,” Opt. Lett. 42(6), 1129–1132 (2017).
[Crossref] [PubMed]

I. Toselli, F. Wang, and O. Korotkova, “Controlled simulation of optical turbulence in a temperature gradient air chamber,” Proc. SPIE 9833, 98330C (2016).
[Crossref]

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves Random Media 19(4), 692–702 (2009).
[Crossref]

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations,” in Aerospace Conference (IEEE, 2017).
[Crossref]

Li, J.

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

G. Yang, S. You, M. Bi, B. Fan, Y. Lu, X. Zhou, J. Li, H. Geng, and T. Wang, “Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector,” Appl. Opt. 56(26), 7474–7483 (2017).
[Crossref] [PubMed]

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light,” Opt. Lett. 42(6), 1129–1132 (2017).
[Crossref] [PubMed]

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations,” in Aerospace Conference (IEEE, 2017).
[Crossref]

Li, Z.

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

Lu, Y.

Lucke, R. L.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Lutomirski, R. F.

Mackerrow, E. P.

Mahalov, A.

A. McDaniel and A. Mahalov, “Lensing effects in a random inhomogeneous medium,” Opt. Express 25(23), 28157–28166 (2017).
[Crossref]

A. Mahalov and M. Moustaoui, “Characterization of atmospheric optical turbulence for laser propagation,” Laser Photonics Rev. 4(1), 144–159 (2010).
[Crossref]

A. Mahalov and M. Moustaoui, “Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere,” J. Comput. Phys. 228(4), 1294–1311 (2009).
[Crossref]

O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves Random Media 19(4), 692–702 (2009).
[Crossref]

Mahon, R.

Malek-Madani, R.

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

Masino, A.

A. Masino and C. Young, “Double pass wave structure function in weak to strong optical turbulence,” Waves Random Media 15(3), 71–89 (2005).
[Crossref]

McDaniel, A.

Meehan, T. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Miller, W. B.

Minet, J.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
[Crossref]

Mironov, V. L.

M. S. Belen’kii and V. L. Mironov, “Diffraction of optical radiation on a mirror disc in a turbulent atmosphere,” Quantum Electron. 5(11), 38–45 (1972).

Moore, C. I.

Moustaoui, M.

A. Mahalov and M. Moustaoui, “Characterization of atmospheric optical turbulence for laser propagation,” Laser Photonics Rev. 4(1), 144–159 (2010).
[Crossref]

A. Mahalov and M. Moustaoui, “Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere,” J. Comput. Phys. 228(4), 1294–1311 (2009).
[Crossref]

Mozersky, S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Murphy, J.

Murphy, J. L.

Myakinin, V. A.

A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
[Crossref]

Nelson, C.

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

Nelson, D. H.

Nelson, W.

Nesterova, T. N.

S. S. Kashkarov, T. N. Nesterova, and A. S. Smirnov, “Light intensity fluctuations in backscatter from a turbulent medium,” Radiophys. Quantum Electron. 27(10), 890–894 (1984).
[Crossref]

Noharet, B.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Oh, E.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Öhgren, J.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Osmon, C. L.

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

Palastro, J. P.

Panich, M. G.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

Parenti, R. R.

Patrushev, G. Y.

G. Y. Patrushev, A. I. Petrov, and V. V. Pokasov, “Intensity fluctuations upon specular reflection of optical beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 26(7), 612–619 (1983).
[Crossref]

Perlot, N.

Petrin, R. R.

Petrov, A. I.

G. Y. Patrushev, A. I. Petrov, and V. V. Pokasov, “Intensity fluctuations upon specular reflection of optical beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 26(7), 612–619 (1983).
[Crossref]

Phillips, R.

Phillips, R. L.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

L. C. Andrews and R. L. Phillips, “Monostatic lidar in weak-to-strong turbulence,” Waves Random Media 11(3), 233–245 (2001).
[Crossref]

L. C. Andrews, R. L. Phillips, and A. R. Weeks, “Rytov approximation of the irradiance covariance and variance of a retroreflected optical beam in atmospheric turbulence,” J. Opt. Soc. Am. A 14(8), 1938–1948 (1997).
[Crossref]

L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36(3), 698–708 (1997).
[Crossref] [PubMed]

Pister, K. S. J.

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12(3), 233–242 (2003).
[Crossref]

Pokasov, V. V.

G. Y. Patrushev, A. I. Petrov, and V. V. Pokasov, “Intensity fluctuations upon specular reflection of optical beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 26(7), 612–619 (1983).
[Crossref]

Polnau, E.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
[Crossref]

Porch, W. M.

Puryear, A. L.

Quick, C. R.

Rabinovich, W. S.

Savchenko, S. A.

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

Schmitt, M. J.

Shapiro, J. H.

Sirazetdinov, V. S.

V. S. Sirazetdinov, “Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet,” Appl. Opt. 47(7), 975–985 (2008).
[Crossref] [PubMed]

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).

D. I. Dmitriev, Y. N. Evchenko, I. V. Ivanova, and V. S. Sirazetdinov, “Multiframe recording of laser radiation distorted by a turbulent jet from an aircraft,” J. Opt. Technol. 68(6), 378–382 (2001).
[Crossref]

Sjöqvist, L.

L. Sjöqvist, “Laser beam propagation in jet engine plume environments: a review,” Proc. SPIE 7115, 71150C (2008).
[Crossref]

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Smirnov, A. S.

S. S. Kashkarov, T. N. Nesterova, and A. S. Smirnov, “Light intensity fluctuations in backscatter from a turbulent medium,” Radiophys. Quantum Electron. 27(10), 890–894 (1984).
[Crossref]

Smith, C. A.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

Sova, R.

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

Splitter, L. J.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

Stell, M.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Suite, M.

Tapster, P. R.

Taylor, L. S.

Thomas, L. M.

Titterton, D. G.

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).

Titterton, D. H.

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).

Toselli, I.

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light,” Opt. Lett. 42(6), 1129–1132 (2017).
[Crossref] [PubMed]

I. Toselli, F. Wang, and O. Korotkova, “Controlled simulation of optical turbulence in a temperature gradient air chamber,” Proc. SPIE 9833, 98330C (2016).
[Crossref]

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations,” in Aerospace Conference (IEEE, 2017).
[Crossref]

Vasquez, J. A.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Vilcheck, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

Visinsky, W. L.

Vorontsov, M. A.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
[Crossref]

Walters, D. L.

Wang, F.

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light,” Opt. Lett. 42(6), 1129–1132 (2017).
[Crossref] [PubMed]

I. Toselli, F. Wang, and O. Korotkova, “Controlled simulation of optical turbulence in a temperature gradient air chamber,” Proc. SPIE 9833, 98330C (2016).
[Crossref]

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations,” in Aerospace Conference (IEEE, 2017).
[Crossref]

Wang, Q.

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Wang, T.

Wang, W.

Wayne, D. T.

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

Weeks, A. R.

Welch, G.

Wilson, J. J.

Wu, C.

Wyngaard, J. C.

Yang, G.

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

G. Yang, S. You, M. Bi, B. Fan, Y. Lu, X. Zhou, J. Li, H. Geng, and T. Wang, “Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector,” Appl. Opt. 56(26), 7474–7483 (2017).
[Crossref] [PubMed]

Yang, H.

You, S.

Young, C.

A. Masino and C. Young, “Double pass wave structure function in weak to strong optical turbulence,” Waves Random Media 15(3), 71–89 (2005).
[Crossref]

Yura, H. T.

Zeng, R.

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

Zhou, L.

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12(3), 233–242 (2003).
[Crossref]

Zhou, X.

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

G. Yang, S. You, M. Bi, B. Fan, Y. Lu, X. Zhou, J. Li, H. Geng, and T. Wang, “Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector,” Appl. Opt. 56(26), 7474–7483 (2017).
[Crossref] [PubMed]

Adv. Space Res. (1)

G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Kireev, and S. A. Savchenko, “Anisotropy of spatial structures in the middle atmosphere,” Adv. Space Res. 12(10), 169–175 (1992).
[Crossref]

Appl. Opt. (13)

R. Mahon, M. S. Ferraro, P. G. Goetz, C. I. Moore, J. Murphy, and W. S. Rabinovich, “Irradiance correlations in retro-reflected beams,” Appl. Opt. 54(31), F96–F102 (2015).
[Crossref] [PubMed]

C. B. Hogge and W. L. Visinsky, “Laser beam probing of jet exhaust turbulence,” Appl. Opt. 10(4), 889–892 (1971).
[Crossref] [PubMed]

V. S. Sirazetdinov, “Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet,” Appl. Opt. 47(7), 975–985 (2008).
[Crossref] [PubMed]

N. Perlot and D. Giggenbach, “Scintillation correlation between forward and return spherical waves,” Appl. Opt. 51(15), 2888–2893 (2012).
[Crossref] [PubMed]

H. D. Eckhardt, “Simple model of corner reflector phenomena,” Appl. Opt. 10(7), 1559–1566 (1971).
[Crossref] [PubMed]

R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10(7), 1652–1658 (1971).
[Crossref] [PubMed]

J. L. Bufton, “Scintillation statistics measured in an earth-space-earth retroreflector link,” Appl. Opt. 16(10), 2654–2660 (1977).
[Crossref] [PubMed]

J. L. Bufton, R. S. Iyer, and L. S. Taylor, “Scintillation statistics caused by atmospheric turbulence and speckle in satellite laser ranging,” Appl. Opt. 16(9), 2408–2413 (1977).
[Crossref] [PubMed]

L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36(3), 698–708 (1997).
[Crossref] [PubMed]

J. H. Churnside and J. J. Wilson, “Enhanced backscatter of a reflected beam in atmospheric turbulence,” Appl. Opt. 32(15), 2651–2655 (1993).
[Crossref] [PubMed]

R. Mahon, C. I. Moore, H. R. Burris, M. Ferraro, W. S. Rabinovich, M. Suite, and L. M. Thomas, “Probability density of irradiance fluctuations observed over terrestrial ranges,” Appl. Opt. 50(35), 6476–6483 (2011).
[Crossref] [PubMed]

D. H. Nelson, D. L. Walters, E. P. Mackerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, and R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39(12), 1857–1871 (2000).
[Crossref] [PubMed]

G. Yang, S. You, M. Bi, B. Fan, Y. Lu, X. Zhou, J. Li, H. Geng, and T. Wang, “Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector,” Appl. Opt. 56(26), 7474–7483 (2017).
[Crossref] [PubMed]

Atmos. Oceanic Opt. (3)

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser irradiation. Part 1. Angular spectrum of a disturbed beam,” Atmos. Oceanic Opt. 14, 824–829 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. G. Titterton, “Effect of turbo-engine jet on laser radiation. Part 2. Random wandering of disturbed beam,” Atmos. Oceanic Opt. 14, 830–834 (2001).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Statistics of the structural state fluctuations for laser beams disturbed by a jet of aero-engine,” Atmos. Oceanic Opt. 17, 47–53 (2004).

IEEE Photonics J. (1)

G. Yang, Z. Li, M. Bi, X. Zhou, R. Zeng, T. Wang, and J. Li, “Channel modeling and Performance Analysis of Modulating retroreflector FSO systems under weak turbulence conditions,” IEEE Photonics J. 9(2), 7902610 (2017).
[Crossref]

Izv. Vyss. Ucebn. Zaved. Radiofiz. (2)

A. S. Gurvich and S. S. Kashkarov, “Enhanced backscattering in a turbulent medium,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 20, 794–796 (1977).

S. S. Kashkarov, “Enhancement of the average backscattered intensity in a turbulent atmosphere,” Izv. Vyss. Ucebn. Zaved. Radiofiz. 26, 44–48 (1983).

J. Appl. Phys. (1)

J. L. Barrett and P. A. Budni, “Laser beam propagation through strong turbulence,” J. Appl. Phys. 71(3), 1124–1127 (1992).
[Crossref]

J. Comput. Phys. (1)

A. Mahalov and M. Moustaoui, “Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere,” J. Comput. Phys. 228(4), 1294–1311 (2009).
[Crossref]

J. Microelectromech. Syst. (1)

L. Zhou, J. M. Kahn, and K. S. J. Pister, “Corner-cube retroreflectors based on structure-assisted assembly for free-space optical communication,” J. Microelectromech. Syst. 12(3), 233–242 (2003).
[Crossref]

J. Opt. (1)

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15(2), 1–8 (2013).
[Crossref]

J. Opt. Commun. Netw. (2)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

J. Opt. Technol. (1)

Laser Photonics Rev. (1)

A. Mahalov and M. Moustaoui, “Characterization of atmospheric optical turbulence for laser propagation,” Laser Photonics Rev. 4(1), 144–159 (2010).
[Crossref]

Opt. Eng. (2)

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. Cochrell, R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng. 42(6), 1611–1617 (2003).
[Crossref]

E. Hällstig, J. Öhgren, L. Allard, L. Sjöqvist, D. Engström, S. Hård, D. Ågren, S. Junique, Q. Wang, and B. Noharet, “Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering,” Opt. Eng. 44(4), 045001 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (6)

M. Achour, “Free-space optical communication by retro-modulation: Concept, technologies and challenges,” Proc. SPIE 5614, 52–63 (2004).
[Crossref]

L. Sjöqvist, “Laser beam propagation in jet engine plume environments: a review,” Proc. SPIE 7115, 71150C (2008).
[Crossref]

C. A. Smith, S. B. Belichki, J. T. Coffaro, M. G. Panich, L. J. Splitter, L. C. Andrews, R. L. Phillips, and D. T. Wayne, “Enhanced backscatter analysis for long-range optical tracking in deep turbulent conditions,” Proc. SPIE 9614, 96140A (2015).

M. S. Belen’kii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396–406 (1999).
[Crossref]

C. Nelson, S. Avramov-Zamurovic, R. Malek-Madani, O. Korotkova, R. Sova, and F. Davidson, “Measurements and comparison of the probability density and covariance functions of laser beam intensity fluctuations in a hot-air turbulence emulator with the maritime atmospheric environment,” Proc. SPIE 8517, 851707 (2012).
[Crossref]

I. Toselli, F. Wang, and O. Korotkova, “Controlled simulation of optical turbulence in a temperature gradient air chamber,” Proc. SPIE 9833, 98330C (2016).
[Crossref]

Quantum Electron. (1)

M. S. Belen’kii and V. L. Mironov, “Diffraction of optical radiation on a mirror disc in a turbulent atmosphere,” Quantum Electron. 5(11), 38–45 (1972).

Radiophys. Quantum Electron. (2)

G. Y. Patrushev, A. I. Petrov, and V. V. Pokasov, “Intensity fluctuations upon specular reflection of optical beams in a turbulent atmosphere,” Radiophys. Quantum Electron. 26(7), 612–619 (1983).
[Crossref]

S. S. Kashkarov, T. N. Nesterova, and A. S. Smirnov, “Light intensity fluctuations in backscatter from a turbulent medium,” Radiophys. Quantum Electron. 27(10), 890–894 (1984).
[Crossref]

Waves Random Media (4)

A. N. Bogaturov, A. S. Gurvich, S. S. Kashkarov, and V. A. Myakinin, “Backscattering from different objects in turbulent media,” Waves Random Media 1(3), S1–S9 (1991).
[Crossref]

L. C. Andrews and R. L. Phillips, “Monostatic lidar in weak-to-strong turbulence,” Waves Random Media 11(3), 233–245 (2001).
[Crossref]

A. Masino and C. Young, “Double pass wave structure function in weak to strong optical turbulence,” Waves Random Media 15(3), 71–89 (2005).
[Crossref]

O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves Random Media 19(4), 692–702 (2009).
[Crossref]

Other (8)

F. Wang, I. Toselli, J. Li, and O. Korotkova, “Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations,” in Aerospace Conference (IEEE, 2017).
[Crossref]

Z. Yang and M. A. Vorontsov, “Numerical analysis of mirage-image formation in presence of atmospheric turbulence and refractive gradient layer,” in Imaging and Applied Optics Conference, Vol. PM4C of 2015 Imaging Through Turbulence Series (Optical Society of America, 2015), paper PM4C.4.
[Crossref]

V. A. Banakh and V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech, 1987).

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, “Enhanced backscattering in optics,” in Progress in Optics XXIX, E. Wolf, ed. (Elsevier, 1991).

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation in Random Media, 2nd ed. (SPIE, 2005).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

O. Korotkova, Partially Coherent Beam Propagation in Turbulent Atmosphere with Applications (VDM, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup used for generation and measurement of the beam intensity statistics in the monostatic double-pass link. AP: Attenuation Plate; BE: Beam Expander; BS: Beam Splitter; NDF: Neutral Density Filter; SPI: Shear Plate Interferometer. The embedded plotted curve shows the average intensity captured by the CMOS camera at the cross-section which passed through the maximum intensity spot. The NDF and AP were used to guarantee the generated images were not saturated.
Fig. 2
Fig. 2 Average intensity captured by the camera and calculated for the ensemble of 1000 frames. The localized turbulence was generated by one heat gun with no chamber. The heat gun was located at (a) I, (b) II, (c) III, (d) IV, (e) V, and (f) no heat gun was placed.
Fig. 3
Fig. 3 Average intensities captured by the camera over 1000 frames. The localized turbulence was generated by using a chamber with one heat gun. The chamber is located at (a) I, (b) II, and (c) III.
Fig. 4
Fig. 4 Average intensities captured by the camera over 1000 frames. The localized turbulence was generated by using a chamber with three heat guns. The chamber is located at (a) I, (b) II, and (c) III.
Fig. 5
Fig. 5 Average intensities at vertical cross-section captured by the CCD camera over 1000 frames. The localized turbulence was generated by using either (a) single heat gun inside chamber at location I, (b) 3 heat guns inside chamber at location I, (c) single heat gun (no chamber) at location I, and (d) single heat gun (no chamber) at location II.
Fig. 6
Fig. 6 NCF of the EBS intensity captured by the camera. The localized turbulence in (a)-(d) were generated in the same ways as that in Figs. 5(a)-5(d), respectively.
Fig. 7
Fig. 7 SOM of the EBS intensity captured by the camera. The localized turbulence in subplots (a)-(d) was generated in the same ways as that in Figs. 5(a)-5(d), respectuvely.
Fig. 8
Fig. 8 Temperature structure function of turbulence plotted against the separation distance measured with thermocouple sensors along horizontal and vertical directions of transverse chamber cross-sections, at different locations from the heat gun(s). The sensors are placed along the support frame with separation distances R = 1cm, 1.5cm, 2cm, 2cm, and 2.5cm.

Tables (1)

Tables Icon

Table 1 Structure constants and Rytov variances of different chamber turbulence in experiment

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C N ( r 1 , r 2 )= I( r 1 )I( r 2 ) / I( r 1 )I( r 2 ) max ,
c N ( r )= I 2 ( r ) / I( r ) 2 .
D T ( R )= C ˜ T 2 ( x 2 ζ x 2 + y 2 ζ y 2 ) α3 2 ,
D T ( R )= ( T 2 T 1 ) .
C ˜ n 2 = C ˜ T 2 [ ( 79× p T 2 ) 10 6 ] 2 ,

Metrics