Abstract

An efficient method has been developed to identify meat species by using laser-induced breakdown spectroscopy (LIBS). To improve the accuracy and stability of meat species identification, multiplicative scatter correction (MSC) was adopted to first pretreat the spectrum for correction of spectrum scatter. Then the corrected spectra were identified by using the K-nearest neighbor (KNN) model. The results showed that the identification rate improved from 94.17% to 100% and the prediction coefficient of variance (CV) decreased from 5.16% to 0.56%. This means that the accuracy and stability of meat species identification using MSC and LIBS simultaneously improved. In light of the findings, the proposed method can be a valuable tool for meat species identification using LIBS.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Identification of Huanglongbing-infected navel oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods

Gangfu Rao, Lin Huang, Muhua Liu, Tianbing Chen, Jinyin Chen, Ziyi Luo, Fanghao Xu, Xuehong Xu, and Mingyin Yao
Appl. Opt. 57(29) 8738-8742 (2018)

Determination of heavy metal chromium in pork by laser-induced breakdown spectroscopy

Lin Huang, Tianbing Chen, Xiuwen He, Hui Yang, Caihong Wang, Muhua Liu, and Mingyin Yao
Appl. Opt. 56(1) 24-28 (2017)

Accuracy improvement on polymer identification using laser-induced breakdown spectroscopy with adjusting spectral weightings

Y. Yu, L. B. Guo, Z. Q. Hao, X. Y. Li, M. Shen, Q. D. Zeng, K. H. Li, X. Y. Zeng, Y. F. Lu, and Z. Ren
Opt. Express 22(4) 3895-3901 (2014)

References

  • View by:
  • |
  • |
  • |

  1. United States Department of Agriculture, “Livestock and Poultry: World Markets and Trade(2017) ”, https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf .
  2. M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
    [Crossref] [PubMed]
  3. X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors,” J. Food Eng. 119(4), 744–749 (2013).
    [Crossref]
  4. M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
    [Crossref] [PubMed]
  5. P. A. Guy, M. C. Savoy, and R. H. Stadler, “Quantitative analysis of clenbuterol in meat products using liquid chromatography-electrospray ionisation tandem mass spectrometry,” J. Chromatogr. B Biomed. Sci. Appl. 736(1-2), 209–219 (1999).
    [Crossref] [PubMed]
  6. B. Vallejo-Córdoba and M. Cota-Rivas, “Meat species identification by linear discriminant analysis of capillary electrophoresis protein profiles,” J. Capillary Electrophor. 5(5-6), 171–175 (1998).
    [PubMed]
  7. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
    [Crossref] [PubMed]
  8. L. Liu, L. Deng, L. Fan, X. Huang, Y. Lu, X. Shen, L. Jiang, J. F. Silvain, and Y. Lu, “Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas,” Opt. Express 25(22), 27000–27007 (2017).
    [Crossref] [PubMed]
  9. R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
    [Crossref] [PubMed]
  10. D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
    [Crossref]
  11. W. A. Farooq, W. Tawfik, F. N. Almutairi, and Z. A. Alahmed, “Qualitative Analysis and Plasma Characteristics of Soil from a Desert Area using LIBS Technique,” J. Opt. Soc. Korea 17(6), 548–558 (2013).
    [Crossref]
  12. K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
    [Crossref]
  13. J. N. Kunz, D. V. Voronine, H. W. Lee, A. V. Sokolov, and M. O. Scully, “Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy,” Opt. Express 25(7), 7251–7262 (2017).
    [Crossref] [PubMed]
  14. L. Krajcarová, K. Novotný, M. Galiová, V. Kanický, V. Adam, and R. Kizek, “Mapping of elements distribution in plant samples using LIBS,” Elemental mapping; laser induced breakdown spectroscopy; LIBS; plants (2010).
  15. W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
    [Crossref]
  16. Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).
  17. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
    [Crossref] [PubMed]
  18. X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
    [Crossref] [PubMed]
  19. Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
    [Crossref]
  20. G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
    [Crossref] [PubMed]
  21. F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
    [Crossref]
  22. Y.-N. Zhu, Y. Ping, and X.-Y. Yang, “Classification of Fresh Meat Species Using Laser-induced Breakdown Spectroscopy with Support Vector Machine and Principal Component Analysis,” Chin. J. Anal. Chem. 45, 336–341 (2017).
  23. C. E. Bodwell, and B. A. ANDERSON, Nutritional Composition and Value of Meat and Meat Products (1986).
  24. G. Lombardi-Boccia, S. Lanzi, and A. Aguzzi, “Aspects of meat quality: trace elements and B vitamins in raw and cooked meats,” J. Food Compos. Anal. 18(1), 39–46 (2005).
    [Crossref]
  25. NIST, “NIST Atomic Spectra Database”, retrieved Oct. 2014, http://www.nist.gov/pml/data/asd.cfm
  26. Y. Jiang and Z. H. Zhou, “Editing training data for kNN classifiers with neural network ensemble,” Advances in Neural Networks–ISNN 2004, 356–361 (2004).
  27. Y. Liu, X. Sun, and A. Ouyang, “Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN,” Lebensm. Wiss. Technol. 43(4), 602–607 (2010).
    [Crossref]
  28. H. Chen, Q. Song, G. Tang, Q. Feng, and L. Lin, “The combined optimization of Savitzky-Golay smoothing and multiplicative scatter correction for FT-NIR PLS models,” ISRN Spectroscopy 2013 (2013).
    [Crossref]
  29. T. Isaksson and T. Næs, “The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy,” Appl. Spectrosc. 42(7), 1273–1284 (1988).
    [Crossref]
  30. I. S. Helland, T. Næs, and T. Isaksson, “Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data,” Chemom. Intell. Lab. Syst. 29(2), 233–241 (1995).
    [Crossref]
  31. M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
    [Crossref]

2018 (1)

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

2017 (5)

L. Liu, L. Deng, L. Fan, X. Huang, Y. Lu, X. Shen, L. Jiang, J. F. Silvain, and Y. Lu, “Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas,” Opt. Express 25(22), 27000–27007 (2017).
[Crossref] [PubMed]

J. N. Kunz, D. V. Voronine, H. W. Lee, A. V. Sokolov, and M. O. Scully, “Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy,” Opt. Express 25(7), 7251–7262 (2017).
[Crossref] [PubMed]

X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
[Crossref] [PubMed]

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Y.-N. Zhu, Y. Ping, and X.-Y. Yang, “Classification of Fresh Meat Species Using Laser-induced Breakdown Spectroscopy with Support Vector Machine and Principal Component Analysis,” Chin. J. Anal. Chem. 45, 336–341 (2017).

2016 (1)

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

2015 (2)

K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
[Crossref]

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

2014 (1)

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

2013 (4)

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[Crossref] [PubMed]

W. A. Farooq, W. Tawfik, F. N. Almutairi, and Z. A. Alahmed, “Qualitative Analysis and Plasma Characteristics of Soil from a Desert Area using LIBS Technique,” J. Opt. Soc. Korea 17(6), 548–558 (2013).
[Crossref]

M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
[Crossref] [PubMed]

X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors,” J. Food Eng. 119(4), 744–749 (2013).
[Crossref]

2010 (1)

Y. Liu, X. Sun, and A. Ouyang, “Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN,” Lebensm. Wiss. Technol. 43(4), 602–607 (2010).
[Crossref]

2009 (1)

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
[Crossref]

2007 (1)

M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
[Crossref]

2005 (1)

G. Lombardi-Boccia, S. Lanzi, and A. Aguzzi, “Aspects of meat quality: trace elements and B vitamins in raw and cooked meats,” J. Food Compos. Anal. 18(1), 39–46 (2005).
[Crossref]

2004 (4)

Y. Jiang and Z. H. Zhou, “Editing training data for kNN classifiers with neural network ensemble,” Advances in Neural Networks–ISNN 2004, 356–361 (2004).

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
[Crossref] [PubMed]

W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[Crossref]

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

1999 (1)

P. A. Guy, M. C. Savoy, and R. H. Stadler, “Quantitative analysis of clenbuterol in meat products using liquid chromatography-electrospray ionisation tandem mass spectrometry,” J. Chromatogr. B Biomed. Sci. Appl. 736(1-2), 209–219 (1999).
[Crossref] [PubMed]

1998 (1)

B. Vallejo-Córdoba and M. Cota-Rivas, “Meat species identification by linear discriminant analysis of capillary electrophoresis protein profiles,” J. Capillary Electrophor. 5(5-6), 171–175 (1998).
[PubMed]

1995 (1)

I. S. Helland, T. Næs, and T. Isaksson, “Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data,” Chemom. Intell. Lab. Syst. 29(2), 233–241 (1995).
[Crossref]

1988 (1)

Adler, W.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Aguzzi, A.

G. Lombardi-Boccia, S. Lanzi, and A. Aguzzi, “Aspects of meat quality: trace elements and B vitamins in raw and cooked meats,” J. Food Compos. Anal. 18(1), 39–46 (2005).
[Crossref]

Alahmed, Z. A.

Allen, P.

M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
[Crossref] [PubMed]

Almutairi, F. N.

Asensio, L.

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

Baerdemaeker, J. D.

M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
[Crossref]

Bilge, G.

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

Boyaci, I. H.

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

Burgess, S.

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
[Crossref]

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
[Crossref] [PubMed]

Cabalín, L.

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Cheng, X.

Cota-Rivas, M.

B. Vallejo-Córdoba and M. Cota-Rivas, “Meat species identification by linear discriminant analysis of capillary electrophoresis protein profiles,” J. Capillary Electrophor. 5(5-6), 171–175 (1998).
[PubMed]

Cui, S.

X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors,” J. Food Eng. 119(4), 744–749 (2013).
[Crossref]

Delgado, T.

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Deng, L.

Deng, L. M.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Devey, K.

K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
[Crossref]

Ding, H.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

ElMasry, G.

M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
[Crossref] [PubMed]

Eseller, K. E.

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

Fan, L.

Farooq, W. A.

Gao, M.

García, T.

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

Girón, D.

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

González, I.

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

Guo, L.

Guo, L. B.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[Crossref] [PubMed]

Guo, Y. M.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Guy, P. A.

P. A. Guy, M. C. Savoy, and R. H. Stadler, “Quantitative analysis of clenbuterol in meat products using liquid chromatography-electrospray ionisation tandem mass spectrometry,” J. Chromatogr. B Biomed. Sci. Appl. 736(1-2), 209–219 (1999).
[Crossref] [PubMed]

Hao, Z. Q.

He, X. N.

Helland, I. S.

I. S. Helland, T. Næs, and T. Isaksson, “Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data,” Chemom. Intell. Lab. Syst. 29(2), 233–241 (1995).
[Crossref]

Hernández, P. E.

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

Hou, Z.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

Huang, X.

Isaksson, T.

I. S. Helland, T. Næs, and T. Isaksson, “Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data,” Chemom. Intell. Lab. Syst. 29(2), 233–241 (1995).
[Crossref]

T. Isaksson and T. Næs, “The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy,” Appl. Spectrosc. 42(7), 1273–1284 (1988).
[Crossref]

Jiang, L.

Jiang, Y.

Y. Jiang and Z. H. Zhou, “Editing training data for kNN classifiers with neural network ensemble,” Advances in Neural Networks–ISNN 2004, 356–361 (2004).

Kamruzzaman, M.

M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
[Crossref] [PubMed]

Kanawade, R.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Klämpfl, F.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Knipfer, C.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Kumar, A.

Kunz, J. N.

Lane, J.

K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
[Crossref]

Lanzi, S.

G. Lombardi-Boccia, S. Lanzi, and A. Aguzzi, “Aspects of meat quality: trace elements and B vitamins in raw and cooked meats,” J. Food Compos. Anal. 18(1), 39–46 (2005).
[Crossref]

Laserna, J.

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Lee, H. W.

Lee, W. B.

W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[Crossref]

Lee, Y. I.

W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[Crossref]

Li, J. M.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Li, K. H.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Li, X.

Li, X. Y.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[Crossref] [PubMed]

Liu, L.

Liu, Y.

Y. Liu, X. Sun, and A. Ouyang, “Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN,” Lebensm. Wiss. Technol. 43(4), 602–607 (2010).
[Crossref]

Lombardi-Boccia, G.

G. Lombardi-Boccia, S. Lanzi, and A. Aguzzi, “Aspects of meat quality: trace elements and B vitamins in raw and cooked meats,” J. Food Compos. Anal. 18(1), 39–46 (2005).
[Crossref]

Lu, J.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

Lu, Y.

Lu, Y. F.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[Crossref] [PubMed]

Mahari, F.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Maleki, M. R.

M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
[Crossref]

Martín, R.

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

Mouazen, A. M.

M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
[Crossref]

Mucalo, M.

K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
[Crossref]

Næs, T.

I. S. Helland, T. Næs, and T. Isaksson, “Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data,” Chemom. Intell. Lab. Syst. 29(2), 233–241 (1995).
[Crossref]

T. Isaksson and T. Næs, “The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy,” Appl. Spectrosc. 42(7), 1273–1284 (1988).
[Crossref]

Ouyang, A.

Y. Liu, X. Sun, and A. Ouyang, “Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN,” Lebensm. Wiss. Technol. 43(4), 602–607 (2010).
[Crossref]

Ping, Y.

Y.-N. Zhu, Y. Ping, and X.-Y. Yang, “Classification of Fresh Meat Species Using Laser-induced Breakdown Spectroscopy with Support Vector Machine and Principal Component Analysis,” Chin. J. Anal. Chem. 45, 336–341 (2017).

Rajendram, G.

K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
[Crossref]

Ramon, H.

M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
[Crossref]

Rodríguez, M. A.

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

Rohde, M.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Ruiz, J.

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Savoy, M. C.

P. A. Guy, M. C. Savoy, and R. H. Stadler, “Quantitative analysis of clenbuterol in meat products using liquid chromatography-electrospray ionisation tandem mass spectrometry,” J. Chromatogr. B Biomed. Sci. Appl. 736(1-2), 209–219 (1999).
[Crossref] [PubMed]

Schmidt, M.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Scully, M. O.

Sezer, B.

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

Shen, M.

Shen, X.

Silvain, J. F.

Singh, J. P.

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
[Crossref]

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
[Crossref] [PubMed]

Sneddon, J.

W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[Crossref]

Sokolov, A. V.

Stadler, R. H.

P. A. Guy, M. C. Savoy, and R. H. Stadler, “Quantitative analysis of clenbuterol in meat products using liquid chromatography-electrospray ionisation tandem mass spectrometry,” J. Chromatogr. B Biomed. Sci. Appl. 736(1-2), 209–219 (1999).
[Crossref] [PubMed]

Stelzle, F.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Sun, D. W.

M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
[Crossref] [PubMed]

Sun, X.

Y. Liu, X. Sun, and A. Ouyang, “Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN,” Lebensm. Wiss. Technol. 43(4), 602–607 (2010).
[Crossref]

Tangermann-Gerk, K.

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

Tawfik, W.

Tian, X.

X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors,” J. Food Eng. 119(4), 744–749 (2013).
[Crossref]

Vallejo-Córdoba, B.

B. Vallejo-Córdoba and M. Cota-Rivas, “Meat species identification by linear discriminant analysis of capillary electrophoresis protein profiles,” J. Capillary Electrophor. 5(5-6), 171–175 (1998).
[PubMed]

Velioglu, H. M.

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

Voronine, D. V.

Wang, J.

X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors,” J. Food Eng. 119(4), 744–749 (2013).
[Crossref]

Wang, Z.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

Wu, J.

W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[Crossref]

Xie, Z. Q.

Xiong, W.

Yang, X.

Yang, X. Y.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Yang, X.-Y.

Y.-N. Zhu, Y. Ping, and X.-Y. Yang, “Classification of Fresh Meat Species Using Laser-induced Breakdown Spectroscopy with Support Vector Machine and Principal Component Analysis,” Chin. J. Anal. Chem. 45, 336–341 (2017).

Yuan, T.-B.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

Yueh, F. Y.

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
[Crossref]

A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004).
[Crossref] [PubMed]

Zeng, X.

Zeng, X. Y.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[Crossref] [PubMed]

Zeng, X.-Y.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

Zheng, H.

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
[Crossref]

Zhou, W.-D.

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

Zhou, Z. H.

Y. Jiang and Z. H. Zhou, “Editing training data for kNN classifiers with neural network ensemble,” Advances in Neural Networks–ISNN 2004, 356–361 (2004).

Zhu, Y.-N.

Y.-N. Zhu, Y. Ping, and X.-Y. Yang, “Classification of Fresh Meat Species Using Laser-induced Breakdown Spectroscopy with Support Vector Machine and Principal Component Analysis,” Chin. J. Anal. Chem. 45, 336–341 (2017).

Zhu, Z.

Zhu, Z. H.

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

Advances in Neural Networks–ISNN (1)

Y. Jiang and Z. H. Zhou, “Editing training data for kNN classifiers with neural network ensemble,” Advances in Neural Networks–ISNN 2004, 356–361 (2004).

Appl. Opt. (2)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

W. B. Lee, J. Wu, Y. I. Lee, and J. Sneddon, “Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[Crossref]

Biosyst. Eng. (1)

M. R. Maleki, A. M. Mouazen, H. Ramon, and J. D. Baerdemaeker, “Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,” Biosyst. Eng. 96(3), 427–433 (2007).
[Crossref]

Chemom. Intell. Lab. Syst. (1)

I. S. Helland, T. Næs, and T. Isaksson, “Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data,” Chemom. Intell. Lab. Syst. 29(2), 233–241 (1995).
[Crossref]

Chin. J. Anal. Chem. (1)

Y.-N. Zhu, Y. Ping, and X.-Y. Yang, “Classification of Fresh Meat Species Using Laser-induced Breakdown Spectroscopy with Support Vector Machine and Principal Component Analysis,” Chin. J. Anal. Chem. 45, 336–341 (2017).

Commun. Soil Sci. Plant Anal. (1)

K. Devey, M. Mucalo, G. Rajendram, and J. Lane, “Pasture Vegetation Elemental Analysis by Laser Induced Breakdown Spectroscopy,” Commun. Soil Sci. Plant Anal. 46(sup1), 72–80 (2015).
[Crossref]

Front. Phys. China (1)

Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, and X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. China 9, 419–438 (2014).

J. Agric. Food Chem. (1)

M. A. Rodríguez, T. García, I. González, L. Asensio, P. E. Hernández, and R. Martín, “Quantitation of mule duck in goose foie gras using TaqMan real-time Polymerase Chain Reaction,” J. Agric. Food Chem. 52(6), 1478–1483 (2004).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (1)

Y. M. Guo, L. M. Deng, X. Y. Yang, J. M. Li, K. H. Li, Z. H. Zhu, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Wavelet-based interference correction for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(12), 2401–2406 (2017).
[Crossref]

J. Biophotonics (1)

R. Kanawade, F. Mahari, F. Klämpfl, M. Rohde, C. Knipfer, K. Tangermann-Gerk, W. Adler, M. Schmidt, and F. Stelzle, “Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems,” J. Biophotonics 8(1-2), 153–161 (2015).
[Crossref] [PubMed]

J. Capillary Electrophor. (1)

B. Vallejo-Córdoba and M. Cota-Rivas, “Meat species identification by linear discriminant analysis of capillary electrophoresis protein profiles,” J. Capillary Electrophor. 5(5-6), 171–175 (1998).
[PubMed]

J. Chromatogr. B Biomed. Sci. Appl. (1)

P. A. Guy, M. C. Savoy, and R. H. Stadler, “Quantitative analysis of clenbuterol in meat products using liquid chromatography-electrospray ionisation tandem mass spectrometry,” J. Chromatogr. B Biomed. Sci. Appl. 736(1-2), 209–219 (1999).
[Crossref] [PubMed]

J. Food Compos. Anal. (1)

G. Lombardi-Boccia, S. Lanzi, and A. Aguzzi, “Aspects of meat quality: trace elements and B vitamins in raw and cooked meats,” J. Food Compos. Anal. 18(1), 39–46 (2005).
[Crossref]

J. Food Eng. (1)

X. Tian, J. Wang, and S. Cui, “Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors,” J. Food Eng. 119(4), 744–749 (2013).
[Crossref]

J. Opt. Soc. Korea (1)

Lebensm. Wiss. Technol. (1)

Y. Liu, X. Sun, and A. Ouyang, “Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN,” Lebensm. Wiss. Technol. 43(4), 602–607 (2010).
[Crossref]

Measurement (1)

D. Girón, T. Delgado, J. Ruiz, L. Cabalín, and J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Meat Sci. (1)

G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, and I. H. Boyaci, “Identification of meat species by using laser-induced breakdown spectroscopy,” Meat Sci. 119, 118–122 (2016).
[Crossref] [PubMed]

Opt. Express (3)

Spectrochim. Acta B At. Spectrosc. (1)

F. Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, “Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification,” Spectrochim. Acta B At. Spectrosc. 64(10), 1059–1067 (2009).
[Crossref]

Talanta (1)

M. Kamruzzaman, D. W. Sun, G. ElMasry, and P. Allen, “Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).
[Crossref] [PubMed]

Other (5)

United States Department of Agriculture, “Livestock and Poultry: World Markets and Trade(2017) ”, https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf .

L. Krajcarová, K. Novotný, M. Galiová, V. Kanický, V. Adam, and R. Kizek, “Mapping of elements distribution in plant samples using LIBS,” Elemental mapping; laser induced breakdown spectroscopy; LIBS; plants (2010).

C. E. Bodwell, and B. A. ANDERSON, Nutritional Composition and Value of Meat and Meat Products (1986).

H. Chen, Q. Song, G. Tang, Q. Feng, and L. Lin, “The combined optimization of Savitzky-Golay smoothing and multiplicative scatter correction for FT-NIR PLS models,” ISRN Spectroscopy 2013 (2013).
[Crossref]

NIST, “NIST Atomic Spectra Database”, retrieved Oct. 2014, http://www.nist.gov/pml/data/asd.cfm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup
Fig. 2
Fig. 2 Pellets of six Samples: (a) scallop, (b) shrimp, (c) pig liver, (d) chicken, (e) beef, and (f) mixed sample
Fig. 3
Fig. 3 LIBS spectrum of meat samples ((a) shrimp, (b) chicken, (c) beef, (d) scallop, (e) pig liver, and (f) mixed sample)
Fig. 4
Fig. 4 Identification result of the six kinds of meats using the KNN model without MSC.
Fig. 5
Fig. 5 The relative position of each spectrum and their average spectrum.
Fig. 6
Fig. 6 Identification result of the six kinds of meats using the KNN model with MSC.
Fig. 7
Fig. 7 The relative position of each spectrum and their average spectrum with MSC

Tables (3)

Tables Icon

Table 1 Analytical lines used as input variables for KNN

Tables Icon

Table 2 The average RSD of six kinds of sample at selected spectral lines

Tables Icon

Table 3 The accuracy of identification with MSC and without MSC

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ¯ = 1 n i=1 A i
A i = k i A ¯ + b i
A MSCi = ( A i b i ) k i

Metrics