Abstract

The development of paper-based SERS substrates that can allow multi-component detection in real-word scenarios is of great value for applications in molecule detection under complex conditions. Here, a multifunctional SERS-based paper sensing substrate has been developed through the uniform patterning of high-density arrays of GO–isolated Ag nanoparticles on the hydrophilic porous cellulose paper strip (GO@AgNP@paper). Wet-chemical synthesis was used to provide the cover of SERS hot spots on any part of the paper, not just limited surface deposition. In virtue of the inherent ability of paper to deliver analytes by the capillary force, the detection ability of the GO@AgNP@paper substrate was greatly promoted, allowing as low as 10−19M R6G detection from microliter-volume (50 μL) samples. For the components with different polarity, the paper substrate can be used as an all-in-one machine to achieve the integration of separation and high-sensitive detection for ultralow mixture components, which improves the practical application value of SERS-based paper devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection

Wen Yang, Zhen Li, Zhengyi Lu, Jing Yu, Yanyan Huo, Baoyuan Man, Jie Pan, Haipeng Si, Shouzhen Jiang, and Chao Zhang
Opt. Express 27(3) 3000-3013 (2019)

High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum

Yuanyuan Xu, Cheng Yang, Minghong Wang, Xiaoxiao Pan, Chao Zhang, Mei Liu, ShiCai Xu, Shouzheng Jiang, and Baoyuan Man
Opt. Express 25(14) 16437-16451 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
    [Crossref]
  2. T. Gong, K. V. Kong, D. Goh, M. Olivo, and K. T. Yong, “Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers,” Biomed. Opt. Express 6(6), 2076–2087 (2015).
    [Crossref] [PubMed]
  3. A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
    [Crossref] [PubMed]
  4. Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
    [Crossref]
  5. D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).
  6. S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” Trends Analyt. Chem. 85, 73–82 (2016).
  7. M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
    [Crossref] [PubMed]
  8. Z. Q. Wen, G. Li, and D. Ren, “Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles,” Appl. Spectrosc. 65(5), 514–521 (2011).
    [Crossref] [PubMed]
  9. J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).
  10. R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
    [Crossref]
  11. R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
    [Crossref] [PubMed]
  12. H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
    [Crossref]
  13. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  14. S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
    [Crossref] [PubMed]
  15. W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
    [Crossref]
  16. X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
    [Crossref] [PubMed]
  17. A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Inter. (2017).
  18. K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
    [Crossref]
  19. J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
    [Crossref] [PubMed]
  20. A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
    [Crossref]
  21. S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
    [Crossref]
  22. B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
    [Crossref] [PubMed]
  23. C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).
  24. H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).
  25. E. Roth and W. Kiefer, “Surface-enhanced Raman spectroscopy as a detection method in gas chromatography,” Appl. Spectrosc. 48(10), 1193–1195 (1994).
    [Crossref]
  26. H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
    [Crossref] [PubMed]
  27. J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
    [Crossref] [PubMed]
  28. W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
    [Crossref]
  29. C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
    [Crossref] [PubMed]
  30. D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
    [Crossref] [PubMed]
  31. W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
    [Crossref] [PubMed]
  32. J. E. L. Villa, D. P. Santos, and R. J. Poppi, “Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis,” Mikrochim. Acta 183(10), 2745–2752 (2016).
    [Crossref]
  33. L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
    [Crossref] [PubMed]
  34. M.-L. Cheng, B.-C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution,” Anal. Chim. Acta 708(1-2), 89–96 (2011).
    [Crossref] [PubMed]
  35. A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
    [Crossref] [PubMed]
  36. L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
    [Crossref] [PubMed]
  37. C. H. Lee, L. Tian, and S. Singamaneni, “Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
    [Crossref] [PubMed]
  38. Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
    [Crossref] [PubMed]
  39. J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
    [Crossref] [PubMed]
  40. L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
    [Crossref] [PubMed]
  41. W. W. Yu and I. M. White, “Chromatographic Separation and Detection of Target Analytes from Complex Samples Using Inkjet Printed SERS Substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
    [Crossref] [PubMed]
  42. W. W. Yu and I. M. White, “Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper,” Anal. Chem. 82(23), 9626–9630 (2010).
    [Crossref] [PubMed]
  43. C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
    [Crossref] [PubMed]
  44. R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
    [Crossref]
  45. K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
    [Crossref] [PubMed]
  46. M. Muniz-Miranda, N. Neto, and G. Sbrana, “Surface studies by SERS and SEM techniques on filters coated with colloidal silver,” J. Mol. Struct. 410–411, 205–208 (1997).
    [Crossref]
  47. Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
    [Crossref] [PubMed]
  48. W. W. Yu and I. M. White, “A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection,” Analyst (Lond.) 137(5), 1168–1173 (2012).
    [Crossref] [PubMed]
  49. K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
    [Crossref] [PubMed]
  50. S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
    [Crossref] [PubMed]
  51. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
    [Crossref] [PubMed]
  52. L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
    [Crossref] [PubMed]
  53. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
    [Crossref] [PubMed]
  54. X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
    [Crossref] [PubMed]

2018 (2)

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

2017 (9)

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

2016 (7)

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
[Crossref]

S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” Trends Analyt. Chem. 85, 73–82 (2016).

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

J. E. L. Villa, D. P. Santos, and R. J. Poppi, “Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis,” Mikrochim. Acta 183(10), 2745–2752 (2016).
[Crossref]

2015 (8)

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

T. Gong, K. V. Kong, D. Goh, M. Olivo, and K. T. Yong, “Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers,” Biomed. Opt. Express 6(6), 2076–2087 (2015).
[Crossref] [PubMed]

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
[Crossref]

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

2014 (2)

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
[Crossref] [PubMed]

2013 (4)

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic Separation and Detection of Target Analytes from Complex Samples Using Inkjet Printed SERS Substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

2012 (8)

W. W. Yu and I. M. White, “A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection,” Analyst (Lond.) 137(5), 1168–1173 (2012).
[Crossref] [PubMed]

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
[Crossref] [PubMed]

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
[Crossref] [PubMed]

C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
[Crossref] [PubMed]

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

2011 (7)

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
[Crossref] [PubMed]

Z. Q. Wen, G. Li, and D. Ren, “Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles,” Appl. Spectrosc. 65(5), 514–521 (2011).
[Crossref] [PubMed]

M.-L. Cheng, B.-C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution,” Anal. Chim. Acta 708(1-2), 89–96 (2011).
[Crossref] [PubMed]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

2010 (3)

W. W. Yu and I. M. White, “Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper,” Anal. Chem. 82(23), 9626–9630 (2010).
[Crossref] [PubMed]

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

2006 (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

1997 (1)

M. Muniz-Miranda, N. Neto, and G. Sbrana, “Surface studies by SERS and SEM techniques on filters coated with colloidal silver,” J. Mol. Struct. 410–411, 205–208 (1997).
[Crossref]

1994 (1)

Abbas, A.

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

Abell, J.

J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Angelini, A.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Ardila, J. A.

L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
[Crossref] [PubMed]

Bonifacio, A.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Brimer, A.

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

Brown, T. P.

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
[Crossref] [PubMed]

Cai, H.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Cao, Q.

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

Carneiro, R. L.

L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
[Crossref] [PubMed]

Carrillo-Carrión, C.

C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
[Crossref] [PubMed]

Chai, Y.

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Chang, M. H.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Chang, S.

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

Che, R.

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

Chen, C. H.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Chen, J.

J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
[Crossref] [PubMed]

Chen, X.

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

Chen, Y.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

Cheng, F.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Cheng, H. F.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Cheng, L.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Cheng, M.-L.

M.-L. Cheng, B.-C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution,” Anal. Chim. Acta 708(1-2), 89–96 (2011).
[Crossref] [PubMed]

Cheng, Y.-F.

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

Chia, D. L.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Chiadò, A.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Chih, C. L.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Ching, H. C.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Chu, H.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Chwee, Ts.

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Combs, Z. A.

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

Coronado-Puchau, M.

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

Cui, C. H.

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

Cui, S.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Dai, Z.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Dalla Marta, S.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Davis, R.

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

Dendisova, M.

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

Deng, W.

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

Dong, M. Q.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Du, C.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Du, Y.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

Duan, H.

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

Fang, X.

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

Forouzan, O.

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
[Crossref] [PubMed]

Fortuni, B.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Fossey, J. S.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Fujita, Y.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Gao, H.

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

Garnier, G.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
[Crossref] [PubMed]

Geobaldo, F.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Giorgis, F.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Goh, D.

Gong, T.

Gu, R.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

Guo, Q.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

Guo, X.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

Guo, Z.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

Gupta, M. K.

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

Hankus, M. E.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

He, L.

S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” Trends Analyt. Chem. 85, 73–82 (2016).

He, P.

R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
[Crossref] [PubMed]

Hei, W.

R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
[Crossref] [PubMed]

Hong, Z. Y.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Hou, J. G.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Huang, J.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Huang, X. J.

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

Huang, Y. W.

J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
[Crossref] [PubMed]

Hui, D.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Hutchison, J. A.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Hwei, F. C.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Inose, T.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Jeong, K.-H.

H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
[Crossref]

Ji, J.

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

Jiang, C.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Jiang, S.

Jiang, X.

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

Jung, H.

H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
[Crossref]

Kang, M.

H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
[Crossref]

Kang, Y.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

Kiefer, W.

Kien, V. K.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Kleinman, S. L.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Kolska, Z.

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

Kong, K. V.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

T. Gong, K. V. Kong, D. Goh, M. Olivo, and K. T. Yong, “Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers,” Biomed. Opt. Express 6(6), 2076–2087 (2015).
[Crossref] [PubMed]

Kuang, H.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Lai, Y.

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

Lamberti, A.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Latterini, L.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Lee, C. H.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

Lendl, B.

C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
[Crossref] [PubMed]

Li, C.

Li, D.

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
[Crossref] [PubMed]

Li, D. W.

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Li, G.

Li, H.

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Li, H. T.

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

Li, P.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Li, X.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Li, Y.

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

Li, Z.

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
[Crossref] [PubMed]

Liang, P.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Liao, C. D.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Liao, J. D.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

Liao, X.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Liu, A.

Liu, B.

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

Liu, B. H.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

Liu, C. C.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Liu, J.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Liu, J. H.

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

Liu, L.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Liu, M. K.

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

Liu, R.

R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
[Crossref] [PubMed]

Liu, Y.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Liu, Y. Y.

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

Liz-Marzán, L. M.

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

Loh, X. J.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Long, Y. T.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Lu, F.

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Lu, G.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Luo, S. C.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

Luo, Y.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Ma, W.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Ma, Y.

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

Man, B.

Masuhara, A.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Mei, H. C.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Mei, J.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Mein, J. T.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Meng, Y.

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

Muniz-Miranda, M.

M. Muniz-Miranda, N. Neto, and G. Sbrana, “Surface studies by SERS and SEM techniques on filters coated with colloidal silver,” J. Mol. Struct. 410–411, 205–208 (1997).
[Crossref]

Naik, R. R.

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

Natan, M. J.

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Neto, N.

M. Muniz-Miranda, N. Neto, and G. Sbrana, “Surface studies by SERS and SEM techniques on filters coated with colloidal silver,” J. Mol. Struct. 410–411, 205–208 (1997).
[Crossref]

Ngo, Y. H.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
[Crossref] [PubMed]

Nguyenova, H. Y.

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

Ni, D.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Novara, C.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Novikov, S. M.

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

Olivo, M.

Pan, N.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Pan, Y.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

Pang, S.

S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” Trends Analyt. Chem. 85, 73–82 (2016).

Park, M.

H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
[Crossref]

Pellegrino, P. M.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Phillips, E.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Polavarapu, L.

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

Poppi, R. J.

J. E. L. Villa, D. P. Santos, and R. J. Poppi, “Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis,” Mikrochim. Acta 183(10), 2745–2752 (2016).
[Crossref]

Porta, A. L.

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

Qing, J.

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

Qu, A.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Qu, L. L.

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Ren, D.

Reznickova, A.

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

Ricci, M.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Ringe, E.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Rivolo, P.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Roth, E.

Roy, V. A.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Sallum, L. F.

L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
[Crossref] [PubMed]

Santos, D. P.

J. E. L. Villa, D. P. Santos, and R. J. Poppi, “Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis,” Mikrochim. Acta 183(10), 2745–2752 (2016).
[Crossref]

Sbrana, G.

M. Muniz-Miranda, N. Neto, and G. Sbrana, “Surface studies by SERS and SEM techniques on filters coated with colloidal silver,” J. Mol. Struct. 410–411, 205–208 (1997).
[Crossref]

Schatz, G. C.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Scheidt, K. A.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Sekine, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Sergo, V.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Shao, J.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Shevkoplyas, S. S.

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
[Crossref] [PubMed]

Shu, H.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Simon, G. P.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
[Crossref] [PubMed]

Simonet, B. M.

C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
[Crossref] [PubMed]

Singamaneni, S.

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

Singh, J. P.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Sivashanmugan, K.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

Slepicka, P.

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

Slocik, J. M.

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

Soares, F. L. F.

L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
[Crossref] [PubMed]

Su, X.

R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
[Crossref]

Sun, Z.

R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
[Crossref]

Svorcik, V.

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

Tan, M. J.

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

Tang, S.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Tian, L.

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

Tian, Q.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Tong, L.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Toyouchi, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Tripp, R. A.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Tsai, B.-C.

M.-L. Cheng, B.-C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution,” Anal. Chim. Acta 708(1-2), 89–96 (2011).
[Crossref] [PubMed]

Tsukruk, V. V.

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

Uezono, S.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Uji-I, H.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Umemoto, K.

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Valcárcel, M.

C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
[Crossref] [PubMed]

Valley, N.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Villa, J. E. L.

J. E. L. Villa, D. P. Santos, and R. J. Poppi, “Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis,” Mikrochim. Acta 183(10), 2745–2752 (2016).
[Crossref]

Virga, A.

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

Wang, C.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

Wang, H.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Wang, M.

Wang, R.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Wang, W.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

Wang, X.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Wen, Z. Q.

White, I. M.

W. W. Yu and I. M. White, “Chromatographic Separation and Detection of Target Analytes from Complex Samples Using Inkjet Printed SERS Substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection,” Analyst (Lond.) 137(5), 1168–1173 (2012).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper,” Anal. Chem. 82(23), 9626–9630 (2010).
[Crossref] [PubMed]

Wong, K. W.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Woon, W. L.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Wu, L.

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Wu, T.

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

Wu, W.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Wu, X.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Wu, Z.

R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
[Crossref]

Wustholz, K. L.

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

Xian, J. L.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Xiao, X.

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

Xu, C.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Xu, L.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

Xu, M.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

Xu, S.

Xu, Y.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Xue, J. Q.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Yan, L.

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

Yang, C.

Yang, G. H.

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

Yang, J.

M.-L. Cheng, B.-C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution,” Anal. Chim. Acta 708(1-2), 89–96 (2011).
[Crossref] [PubMed]

Yang, T.

S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” Trends Analyt. Chem. 85, 73–82 (2016).

Yang, X.

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
[Crossref] [PubMed]

Yao, C. K.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

Yao, J.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

Ye, W.

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

Yong, K. T.

Yu, J.

Yu, S. H.

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

Yu, W. W.

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic Separation and Detection of Target Analytes from Complex Samples Using Inkjet Printed SERS Substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection,” Analyst (Lond.) 137(5), 1168–1173 (2012).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper,” Anal. Chem. 82(23), 9626–9630 (2010).
[Crossref] [PubMed]

Yu, X.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Yu, X. F.

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Yu, Z.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Yuan, Y.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Zhai, W. L.

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Zhan, H.

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Zhan, J.

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

Zhang, C.

Zhang, D.

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

Zhang, H.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

Zhang, J.

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

Zhang, K.

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

Zhang, W.

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Zhao, H.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Zhao, Q.

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

Zhao, Y.

J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Zheng, X.

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Zhou, F.

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

Zhou, R.

R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
[Crossref]

Zhu, J.

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

Zhu, Q.

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

Zi, Y. H.

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

ACS Appl. Mater. Interfaces (4)

C. H. Lee, L. Tian, and S. Singamaneni, “Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces,” ACS Appl. Mater. Interfaces 2(12), 3429–3435 (2010).
[Crossref] [PubMed]

J. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, and X. F. Yu, “PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection,” ACS Appl. Mater. Interfaces 7(9), 5391–5399 (2015).
[Crossref] [PubMed]

S. Chang, Z. A. Combs, M. K. Gupta, R. Davis, and V. V. Tsukruk, “In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 2(11), 3333–3339 (2010).
[Crossref] [PubMed]

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, and H. T. Li, “Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref] [PubMed]

ACS Nano (1)

X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref] [PubMed]

Anal. Chem. (3)

W. W. Yu and I. M. White, “Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper,” Anal. Chem. 82(23), 9626–9630 (2010).
[Crossref] [PubMed]

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

A. Abbas, A. Brimer, J. M. Slocik, L. Tian, R. R. Naik, and S. Singamaneni, “Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection,” Anal. Chem. 85(8), 3977–3983 (2013).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

H. Li, Q. Zhu, Ts. Chwee, L. Wu, Y. Chai, F. Lu, and Y. Yuan, “Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy,” Anal. Chim. Acta 883, 22–31 (2015).
[Crossref] [PubMed]

M.-L. Cheng, B.-C. Tsai, and J. Yang, “Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution,” Anal. Chim. Acta 708(1-2), 89–96 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (5)

W. W. Yu and I. M. White, “Chromatographic Separation and Detection of Target Analytes from Complex Samples Using Inkjet Printed SERS Substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

Y. Meng, Y. Lai, X. Jiang, Q. Zhao, and J. Zhan, “Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst (Lond.) 138(7), 2090–2095 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection,” Analyst (Lond.) 137(5), 1168–1173 (2012).
[Crossref] [PubMed]

K. Zhang, J. Ji, X. Fang, L. Yan, and B. Liu, “Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing,” Analyst (Lond.) 140(1), 134–139 (2015).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

Appl. Catal. B (1)

Y.-F. Cheng, Q. Cao, J. Zhang, T. Wu, and R. Che, “Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrems array and photo-optimized surface-enhanced Raman scattering,” Appl. Catal. B 217, 37–47 (2017).
[Crossref]

Appl. Spectrosc. (2)

Biomed. Opt. Express (1)

Biosens. Bioelectron. (2)

M. J. Tan, Z. Y. Hong, M. H. Chang, C. C. Liu, H. F. Cheng, X. J. Loh, C. H. Chen, C. D. Liao, and K. V. Kong, “Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides,” Biosens. Bioelectron. 96, 167–172 (2017).
[Crossref] [PubMed]

D. Li, Y. Ma, H. Duan, W. Deng, and D. Li, “Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite,” Biosens. Bioelectron. 99, 389–398 (2018).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

B. Fortuni, T. Inose, S. Uezono, S. Toyouchi, K. Umemoto, S. Sekine, Y. Fujita, M. Ricci, G. Lu, A. Masuhara, J. A. Hutchison, L. Latterini, and H. Uji-I, “In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates,” Chem. Commun. (Camb.) 53(82), 11298–11301 (2017).
[Crossref] [PubMed]

Compos. Par. B-Eng. (1)

H. Zhan, F. Cheng, Y. Chen, K. W. Wong, J. Mei, D. Hui, W. L. Woon, and Y. Liu, “Transfer printing for preparing nanostructured PDMS film as flexible SERS active substrate,” Compos. Par. B-Eng. 84, 222–227 (2016).

Faraday Discuss. (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

J Phys. Chem. C (1)

C. Novara, S. Dalla Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, and F. Giorgis, “RS-active ag nanoparticles on porous silicon and PDMS substrates: a comparative study of uniformity and Raman efficiency,” J Phys. Chem. C 120, 16946–16953 (2016).

J. Am. Chem. Soc. (1)

S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, “Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment,” J. Am. Chem. Soc. 133(11), 4115–4122 (2011).
[Crossref] [PubMed]

J. Chromatogr. A (1)

C. Carrillo-Carrión, B. M. Simonet, M. Valcárcel, and B. Lendl, “Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots “sponge” nanocomposite,” J. Chromatogr. A 1225, 55–61 (2012).
[Crossref] [PubMed]

J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (1)

R. Liu, W. Hei, P. He, and Z. Li, “Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(24), 2416–2422 (2011).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Cui, Z. Dai, Q. Tian, J. Liu, X. Xiao, C. Jiang, W. Wu, and V. A. Roy, “Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(26), 6371–6379 (2016).
[Crossref]

J. Mol. Struct. (1)

M. Muniz-Miranda, N. Neto, and G. Sbrana, “Surface studies by SERS and SEM techniques on filters coated with colloidal silver,” J. Mol. Struct. 410–411, 205–208 (1997).
[Crossref]

Lab Chip (3)

X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, “Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices,” Lab Chip 12(2), 274–280 (2012).
[Crossref] [PubMed]

J. Chen, J. Abell, Y. W. Huang, and Y. Zhao, “On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy,” Lab Chip 12(17), 3096–3102 (2012).
[Crossref] [PubMed]

L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch Fabrication of Disposable Screen Printed SERS Arrays,” Lab Chip 12(5), 876–881 (2012).
[Crossref] [PubMed]

Langmuir (1)

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman scattering Substrate,” Langmuir 28(23), 8782–8790 (2012).
[Crossref] [PubMed]

Light Sci. Appl. (1)

H. Jung, M. Park, M. Kang, and K.-H. Jeong, “Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules,” Light Sci. Appl. 5(1), e16009 (2016).
[Crossref]

Mater. Chem. (1)

W. Ye, Y. Chen, F. Zhou, C. Wang, and Y. Li, “Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities,” Mater. Chem. 22(35), 18327–18334 (2012).
[Crossref]

Mikrochim. Acta (3)

R. Wang, Y. Xu, R. Wang, C. Wang, H. Zhao, X. Zheng, X. Liao, and L. Cheng, “A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine,” Mikrochim. Acta 184(1), 279–287 (2017).
[Crossref]

Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9-10), 1775–1782 (2015).
[Crossref]

J. E. L. Villa, D. P. Santos, and R. J. Poppi, “Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis,” Mikrochim. Acta 183(10), 2745–2752 (2016).
[Crossref]

Nanoscale (2)

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref] [PubMed]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, “Flexible and mechanical strain resistant large area SERS active substrates,” Nanoscale 4(11), 3410–3414 (2012).
[Crossref] [PubMed]

Nanosci. Nanotechnol. Lett. (1)

R. Zhou, Z. Wu, Z. Sun, and X. Su, “Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Au Porous Nanospheres,” Nanosci. Nanotechnol. Lett. 7(10), 801–805 (2015).
[Crossref]

Opt. Express (1)

RSC Advances (2)

A. Reznickova, P. Slepicka, H. Y. Nguyenova, Z. Kolska, M. Dendisova, and V. Svorcik, “Copper–gold sandwich structures on PE and PET and their SERS enhancement effect,” RSC Advances 7(37), 23055–23064 (2017).
[Crossref]

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Advances 5(59), 47640–47646 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodoms array as hybrid SERS-active substrate for trace detection of malachite green,” Sens. Actuators B Chem. 207, 430–436 (2015).
[Crossref]

Sensor. Actuat. Biol. Chem. (2)

D. Zhang, P. Liang, Z. Yu, D. Zhang, P. Liang, Z. Yu, J. Huang, D. Ni, H. Shu, and M. Q. Dong, “The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects,” Sensor. Actuat. Biol. Chem. 256, 721–728 (2018).

J. T. Mein, Y. H. Zi, H. C. Mei, C. L. Chih, F. C. Hwei, J. L. Xian, H. C. Ching, D. L. Chia, and V. K. Kien, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensor. Actuat. Biol. Chem. 246, 477–486 (2017).

Small (2)

X. Chen, C. H. Cui, Z. Guo, J. H. Liu, X. J. Huang, and S. H. Yu, “Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties,” Small 7(7), 858–863 (2011).
[Crossref] [PubMed]

L. Polavarapu, A. L. Porta, S. M. Novikov, M. Coronado-Puchau, and L. M. Liz-Marzán, “Pen-on-Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates,” Small 10(15), 3065–3071 (2014).
[Crossref] [PubMed]

Talanta (2)

K. Zhang, J. Qing, H. Gao, J. Ji, and B. Liu, “Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis,” Talanta 162, 52–56 (2017).
[Crossref] [PubMed]

L. F. Sallum, F. L. F. Soares, J. A. Ardila, and R. L. Carneiro, “Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation,” Talanta 118, 353–358 (2014).
[Crossref] [PubMed]

Trends Analyt. Chem. (1)

S. Pang, T. Yang, and L. He, “Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides,” Trends Analyt. Chem. 85, 73–82 (2016).

Other (1)

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Inter. (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic representation of the paper-SERS process.
Fig. 2
Fig. 2 (a) SEM images of silver seeds. (b) SEM image of in situ growth of silver nanoparticles from electroless-deposited seeds in paper for 1 min growth time. (c) and (d) SEM images of in situ growth of silver nanoparticles from electroless-deposited seeds in paper for 3 min growth time under different magnification. (e) Raman spectra of R6G on paper at various growing periods, particularly, the lines marked by “8min-1” and “8min-2” display the SERS performance of Ag nanoparticles and Ag aggregations on the paper after 8-min growth respectively. (f) Relative Raman intensity of 613 cm−1 at different growth-time.
Fig. 3
Fig. 3 Typical SEM images of the products on the paper prepared at molar ratios of AA to Ag + of (a) 5, (b) 1, (c) 0.5. (e)-(g) are the electric field distribution images of the products corresponding to (a)-(c). (d) SEM images of GO@AgNPs on the paper prepared at molar ratios of AA to Ag + of 5. (h) is the electric field distribution images of GO@AgNPs corresponding to (d).
Fig. 4
Fig. 4 (a) TEM of the obtained GO. (b) Raman spectrum collected from the GO@AgNPs@paper substrate. (c) The SEM image of the GO@AgNPs@paper sample. (d) Partial details of the SEM image shown in Fig. 4(c). (e) and (f) SERS spectra of R6G measured from the surface of AgNPs@paper and GO@AgNPs@paper before and after storage for 7 days respectively.
Fig.5
Fig.5 (a) and (b) Raman spectra of R6G with different concentrations from 10−8 to10−17M. (c) Raman intensity of R6G at 1,362 cm−1 as a function of the R6G concentration. (d) and (e) Raman spectra of CV with different concentrations from 10−6 to10−20 M. (f) Raman intensity of CV at 911cm−1 as a function of the CV concentration
Fig. 6
Fig. 6 (a) SERS spectra of R6G at 10−6M were collected from10 randomly selected spots from the paper substrate. (b) Intensity distribution of the 613 cm−1 peak in the 10 spectra from a same paper substrate. (c) SERS spectra of R6G at 10−7M were collected from10 paper substrates in different batches. (d) Intensity distribution of the 613 cm−1 peak in the 10 spectra from 10 paper substrates in different batches.
Fig. 7
Fig. 7 (a) SERS spectrum of CV collected from different locations of paper corresponding to Fig. 7(c). (b) Absorption spectra of TB and CV measured respectively from the paper surface as shown in Fig. 7(c). (c) Photographs of the paper strip after the chromatographic separation. (d) SERS spectrum measured from the paper strip after separation.
Fig. 8
Fig. 8 (a) Digital photographs showing R6G dye before chromatographic preconcentration. (b) Digital photograph and fluorescence image of the paper card after chromatographic preconcentration. (b) SERS spectra collected from the tip of paper after preconcentration.
Fig. 9
Fig. 9 SEM images of time dependent in situ growth of silver nanoparticles from electroless-deposited seeds in paper. (a) 3 min, (b) 5min, (c) 8 min and (d) 10 min of growth time of silver nanoparticles from electroless-deposited silver seed in paper.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S n 2+ ( aq ) + 2A g + S n 4+ ( aq ) + 2Ag( s )
D= ΔI I ¯ ×100%= I I ¯ I ¯ ×100%.

Metrics