Abstract

The dynamics of mutually coupled nano-lasers has been analyzed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that in the mutually-coupled system, small-amplitude oscillations with frequencies of order 100 GHz are generated and are maintained with remarkable stability. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. In mutually-coupled nano-lasers the oscillation frequency changes linearly with the frequency detuning between the lasers. For non-identical bias currents, the oscillation frequency of mutually-coupled nano-lasers also increases with bias current. The stability of the oscillations which appear in mutually coupled nano-lasers offers opportunities for their practical applications and notably in photonic integrated circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Symmetry breaking and high-frequency periodic oscillations in mutually coupled laser diodes

F. Rogister and J. García-Ojalvo
Opt. Lett. 28(14) 1176-1178 (2003)

Chaos synchronization in mutually coupled semiconductor lasers with asymmetrical bias currents

Tao Deng, Guang-Qiong Xia, Zheng-Mao Wu, Xiao-Dong Lin, and Jia-Gui Wu
Opt. Express 19(9) 8762-8773 (2011)

Synchronization properties of two mutually delay-coupled semiconductor lasers

Leandro Junges, Athanasios Gavrielides, and Jason A. C. Gallas
J. Opt. Soc. Am. B 33(7) C65-C71 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Spencer and W. E. Lamb, “Theory of two coupled lasers,” Phys. Rev. A 5(2), 893–898 (1972).
    [Crossref]
  2. A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
    [Crossref]
  3. A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
    [Crossref]
  4. M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
    [Crossref]
  5. N. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26(4), 4751–4765 (2018).
    [Crossref] [PubMed]
  6. J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
    [Crossref]
  7. S. Yanchuk, K. R. Schneider, and L. Recke, “Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056221 (2004).
    [Crossref] [PubMed]
  8. P. Kumar, A. Prasad, and R. Ghosh, “Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems,” J. Phys. At. Mol. Opt. Phys. 42(14), 145401 (2009).
    [Crossref]
  9. E. Clerkin, S. O’Brien, and A. Amann, “Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032919 (2014).
    [Crossref] [PubMed]
  10. P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
    [Crossref]
  11. Y. Hong, “Flat broadband chaos in mutually coupled vertical cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1801007 (2015).
  12. Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
    [Crossref]
  13. Q. Gu and Y. Fainman, “Semiconductor Nanolasers,” Cambridge University Press 2017.
  14. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [Crossref] [PubMed]
  15. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
    [Crossref]
  16. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008).
    [Crossref] [PubMed]
  17. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [Crossref] [PubMed]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  19. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010).
    [Crossref] [PubMed]
  20. N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
    [Crossref]
  21. A. M. Lakhani, M.-K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011).
    [Crossref] [PubMed]
  22. K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).
  23. K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
    [Crossref]
  24. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
    [Crossref] [PubMed]
  25. T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
    [Crossref] [PubMed]
  26. H. Han and K. A. Shore, “Dynamics and stability of mutually coupled nano-lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
    [Crossref]
  27. A. M. Yacomotii, S. Haddadi, and S. Barbay, “Self-pulsing nanocavity laser,” Phys. Rev. A. 87, 041804 (2013).
  28. M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
    [Crossref]
  29. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
    [Crossref] [PubMed]
  30. K. Ding and C. Z. Ning, “Metallic sub-wavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), 20 (2012).
    [Crossref]
  31. J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
    [Crossref]
  32. P. Kumar and F. Grillot, “Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase amplitude coupling,” Eur. Phys. J. Spec. Top. 222(3-4), 813–820 (2013).
    [Crossref]
  33. P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
    [Crossref]
  34. Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
    [Crossref] [PubMed]
  35. J. M. Gerard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
    [Crossref]
  36. K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
    [Crossref]
  37. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
    [Crossref] [PubMed]
  38. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  39. S. W. Chang, “Dressed linewidth enhancement factors in small semiconductor lasers,” Opt. Express 20(6), 16450–16470 (2012).
  40. Z. A. Sattar and K. A. Shore, “Optical Injection Effects in Nano-lasers,” IEEE J. Quantum Electron. 52, 1200108 (2016).
  41. A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).
  42. M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
    [Crossref]

2018 (1)

2017 (1)

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

2016 (2)

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled nano-lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

Z. A. Sattar and K. A. Shore, “Optical Injection Effects in Nano-lasers,” IEEE J. Quantum Electron. 52, 1200108 (2016).

2015 (4)

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Y. Hong, “Flat broadband chaos in mutually coupled vertical cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1801007 (2015).

2014 (2)

E. Clerkin, S. O’Brien, and A. Amann, “Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032919 (2014).
[Crossref] [PubMed]

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

2013 (8)

P. Kumar and F. Grillot, “Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase amplitude coupling,” Eur. Phys. J. Spec. Top. 222(3-4), 813–820 (2013).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

A. M. Yacomotii, S. Haddadi, and S. Barbay, “Self-pulsing nanocavity laser,” Phys. Rev. A. 87, 041804 (2013).

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
[Crossref]

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

2012 (2)

K. Ding and C. Z. Ning, “Metallic sub-wavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), 20 (2012).
[Crossref]

S. W. Chang, “Dressed linewidth enhancement factors in small semiconductor lasers,” Opt. Express 20(6), 16450–16470 (2012).

2011 (3)

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

A. M. Lakhani, M.-K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (4)

P. Kumar, A. Prasad, and R. Ghosh, “Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems,” J. Phys. At. Mol. Opt. Phys. 42(14), 145401 (2009).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
[Crossref] [PubMed]

2008 (4)

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008).
[Crossref] [PubMed]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

2004 (2)

J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
[Crossref]

S. Yanchuk, K. R. Schneider, and L. Recke, “Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056221 (2004).
[Crossref] [PubMed]

2002 (1)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

2001 (1)

J. M. Gerard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[Crossref]

1999 (1)

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
[Crossref]

1997 (1)

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
[Crossref]

1972 (1)

M. B. Spencer and W. E. Lamb, “Theory of two coupled lasers,” Phys. Rev. A 5(2), 893–898 (1972).
[Crossref]

Adams, M. J.

N. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26(4), 4751–4765 (2018).
[Crossref] [PubMed]

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

Amann, A.

E. Clerkin, S. O’Brien, and A. Amann, “Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032919 (2014).
[Crossref] [PubMed]

Andrews, S. C.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Barbay, S.

A. M. Yacomotii, S. Haddadi, and S. Barbay, “Self-pulsing nanocavity laser,” Phys. Rev. A. 87, 041804 (2013).

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bimberg, D.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Cemlyn, B. R.

N. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26(4), 4751–4765 (2018).
[Crossref] [PubMed]

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

Chang, S. W.

Chuang, S. L.

Clerkin, E.

E. Clerkin, S. O’Brien, and A. Amann, “Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032919 (2014).
[Crossref] [PubMed]

Dai, L.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Diaz, J. O.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Ding, K.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

K. Ding and C. Z. Ning, “Metallic sub-wavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), 20 (2012).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Erneux, T.

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
[Crossref]

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
[Crossref]

Fainman, Y.

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

Fischer, I.

J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
[Crossref]

Forchel, A.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Frateschi, N. C.

Fu, A.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gao, H.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gavriledes, A.

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
[Crossref]

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
[Crossref]

Gayral, B.

J. M. Gerard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[Crossref]

Geluk, E. J.

Gerard, J. M.

J. M. Gerard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[Crossref]

Ghosh, R.

P. Kumar, A. Prasad, and R. Ghosh, “Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems,” J. Phys. At. Mol. Opt. Phys. 42(14), 145401 (2009).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gregersen, N.

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
[Crossref]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

Grillot, F.

P. Kumar and F. Grillot, “Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase amplitude coupling,” Eur. Phys. J. Spec. Top. 222(3-4), 813–820 (2013).
[Crossref]

Gu, Q.

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

Guo, X.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Haddadi, S.

A. M. Yacomotii, S. Haddadi, and S. Barbay, “Self-pulsing nanocavity laser,” Phys. Rev. A. 87, 041804 (2013).

Han, H.

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled nano-lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

Heil, T.

J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
[Crossref]

Heindel, T.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Henning, I. D.

N. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26(4), 4751–4765 (2018).
[Crossref] [PubMed]

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

Hill, M. T.

Höfling, S.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Hohl, A.

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
[Crossref]

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
[Crossref]

Hong, Y.

Y. Hong, “Flat broadband chaos in mutually coupled vertical cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1801007 (2015).

Hu, E. L.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Hwang, Y.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Jeong, K. Y.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Karouta, F.

Kim, K. S.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Kim, M.-K.

Kistner, C.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Kovanis, V.

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
[Crossref]

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
[Crossref]

Kumar, P.

P. Kumar and F. Grillot, “Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase amplitude coupling,” Eur. Phys. J. Spec. Top. 222(3-4), 813–820 (2013).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems,” J. Phys. At. Mol. Opt. Phys. 42(14), 145401 (2009).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

Lakhani, A.

Lakhani, A. M.

Lamb, W. E.

M. B. Spencer and W. E. Lamb, “Theory of two coupled lasers,” Phys. Rev. A 5(2), 893–898 (1972).
[Crossref]

Lau, E. K.

Lee, Y. H.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Leong, E. S. P.

Li, L.

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

Li, N.

Li, N. Q.

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

Li, P.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

Liu, R. B.

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Liu, T. G.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

Liu, Z. C.

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Lorke, M.

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
[Crossref]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ma, Y. G.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Marell, M.

Marell, M. J. H.

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Mirasso, C.

J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
[Crossref]

Mørk, J.

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
[Crossref]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

Mulet, J.

J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
[Crossref]

Nezhad, M. P.

Ni, C. Y. A.

Ning, C. Z.

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

K. Ding and C. Z. Ning, “Metallic sub-wavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), 20 (2012).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

Niu, N.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

No, Y. S.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Notzel, R.

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Nötzel, R.

O’Brien, S.

E. Clerkin, S. O’Brien, and A. Amann, “Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032919 (2014).
[Crossref] [PubMed]

Oei, Y. S.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Park, H. G.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Prasad, A.

P. Kumar, A. Prasad, and R. Ghosh, “Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems,” J. Phys. At. Mol. Opt. Phys. 42(14), 145401 (2009).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

Qliver, R. A.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Quan, Q. M.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Rahimi-Iman, A.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Recke, L.

S. Yanchuk, K. R. Schneider, and L. Recke, “Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056221 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Sattar, Z. A.

Z. A. Sattar and K. A. Shore, “Optical Injection Effects in Nano-lasers,” IEEE J. Quantum Electron. 52, 1200108 (2016).

Schneider, C.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

Schneider, K. R.

S. Yanchuk, K. R. Schneider, and L. Recke, “Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056221 (2004).
[Crossref] [PubMed]

Seo, M. K.

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Shore, K. A.

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled nano-lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

Z. A. Sattar and K. A. Shore, “Optical Injection Effects in Nano-lasers,” IEEE J. Quantum Electron. 52, 1200108 (2016).

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

Slutsky, B.

Smalbrugge, B.

Smalley, J. S. T.

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

Smit, M. K.

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Spencer, M. B.

M. B. Spencer and W. E. Lamb, “Theory of two coupled lasers,” Phys. Rev. A 5(2), 893–898 (1972).
[Crossref]

Suhr, T.

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
[Crossref]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

Sun, M.

Susanto, H.

N. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26(4), 4751–4765 (2018).
[Crossref] [PubMed]

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

Tong, L. M.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Tucker, R. S.

Vallini, F.

van Veldhoven, P. J.

Veldhoven, P. J. V.

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Vuckovic, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Wang, A. B.

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

Wang, B. J.

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

Wang, D. Q.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Wang, H.

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Wang, Y. C.

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

Woolf, A.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Wu, M. C.

Wu, X. Q.

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Yacomotii, A. M.

A. M. Yacomotii, S. Haddadi, and S. Barbay, “Self-pulsing nanocavity laser,” Phys. Rev. A. 87, 041804 (2013).

Yamamoto, Y.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Yanchuk, S.

S. Yanchuk, K. R. Schneider, and L. Recke, “Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056221 (2004).
[Crossref] [PubMed]

Yang, P.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Yin, L. J.

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Yu, K.

Yvind, K.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Zhang, J. Z.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

Zhang, M. J.

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhu, T. T.

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

Zhu, Y.

Adv. Opt. Photonics (1)

Y. G. Ma, X. Guo, X. Q. Wu, L. Dai, and L. M. Tong, “Semiconductor nanowire lasers,” Adv. Opt. Photonics 5(3), 216–273 (2013).
[Crossref]

Appl. Phys. Lett. (3)

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett. 93(6), 061104 (2008).
[Crossref]

N. Niu, A. Woolf, D. Q. Wang, T. T. Zhu, Q. M. Quan, R. A. Qliver, and E. L. Hu, “Ultra-low threshold gallium nitride photonic crystal nanobeam laser,” Appl. Phys. Lett. 106(23), 231104 (2015).
[Crossref]

K. Ding, Z. C. Liu, L. J. Yin, H. Wang, R. B. Liu, M. T. Hill, M. J. H. Marell, P. J. V. Veldhoven, R. Notzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett. 98(23), 231108 (2011).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

P. Kumar and F. Grillot, “Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase amplitude coupling,” Eur. Phys. J. Spec. Top. 222(3-4), 813–820 (2013).
[Crossref]

IEEE J. Quantum Electron. (3)

J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50(3), 175–185 (2014).
[Crossref]

Z. A. Sattar and K. A. Shore, “Optical Injection Effects in Nano-lasers,” IEEE J. Quantum Electron. 52, 1200108 (2016).

H. Han and K. A. Shore, “Dynamics and stability of mutually coupled nano-lasers,” IEEE J. Quantum Electron. 52(11), 2000306 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Hong, “Flat broadband chaos in mutually coupled vertical cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1801007 (2015).

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1800710 (2015).

IEEE Photonics Technol. Lett. (1)

M. J. Zhang, T. G. Liu, P. Li, A. B. Wang, J. Z. Zhang, and Y. C. Wang, “Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Perot laser diode with optical feedback,” IEEE Photonics Technol. Lett. 23(24), 1872–1874 (2011).
[Crossref]

J. Opt. B Quantum Semiclassical Opt. (1)

J. Mulet, C. Mirasso, T. Heil, and I. Fischer, “Synchronization scenario of two distant mutually coupled semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 6(1), 97–105 (2004).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (3)

P. Kumar, A. Prasad, and R. Ghosh, “Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems,” J. Phys. At. Mol. Opt. Phys. 42(14), 145401 (2009).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external-cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

P. Kumar, A. Prasad, and R. Ghosh, “Stable phase-locking of an external cavity diode laser subjected to external optical injection,” J. Phys. At. Mol. Opt. Phys. 41(13), 135402 (2008).
[Crossref]

Laser Photonics Rev. (1)

K. Ding, J. O. Diaz, D. Bimberg, and C. Z. Ning, “Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects,” Laser Photonics Rev. 9(5), 488–497 (2015).
[Crossref]

Light Sci. Appl. (1)

K. Ding and C. Z. Ning, “Metallic sub-wavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1(7), 20 (2012).
[Crossref]

Nat. Commun. (1)

K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 3822 (2013).

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (10)

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008).
[Crossref] [PubMed]

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17(10), 7790–7799 (2009).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010).
[Crossref] [PubMed]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

A. M. Lakhani, M.-K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011).
[Crossref] [PubMed]

S. W. Chang, “Dressed linewidth enhancement factors in small semiconductor lasers,” Opt. Express 20(6), 16450–16470 (2012).

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

Q. Gu, B. Slutsky, F. Vallini, J. S. T. Smalley, M. P. Nezhad, N. C. Frateschi, and Y. Fainman, “Purcell effect in sub-wavelength semiconductor lasers,” Opt. Express 21(13), 15603–15617 (2013).
[Crossref] [PubMed]

N. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, and M. J. Adams, “Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study,” Opt. Express 26(4), 4751–4765 (2018).
[Crossref] [PubMed]

Phys. Rev. A (3)

M. B. Spencer and W. E. Lamb, “Theory of two coupled lasers,” Phys. Rev. A 5(2), 893–898 (1972).
[Crossref]

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Quasiperiodic synchronization for two delay-coupled semiconductor lasers,” Phys. Rev. A 59(5), 3941–3949 (1999).
[Crossref]

M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, and I. D. Henning, “Effects of detuning, gain-guiding, and index antiguiding on the dynamics of two laterally coupled semiconductor lasers,” Phys. Rev. A 95(5), 053869 (2017).
[Crossref]

Phys. Rev. A. (1)

A. M. Yacomotii, S. Haddadi, and S. Barbay, “Self-pulsing nanocavity laser,” Phys. Rev. A. 87, 041804 (2013).

Phys. Rev. B (1)

M. Lorke, T. Suhr, N. Gregersen, and J. Mørk, “Theory of nanolaser devices: rate equation analysis versus microscopic theory,” Phys. Rev. B 87(20), 205310 (2013).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

E. Clerkin, S. O’Brien, and A. Amann, “Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(3), 032919 (2014).
[Crossref] [PubMed]

S. Yanchuk, K. R. Schneider, and L. Recke, “Dynamics of two mutually coupled semiconductor lasers: instantaneous coupling limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056221 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. Hohl, A. Gavriledes, T. Erneux, and V. Kovanis, “Localized synchronization in two coupled nonidentical semiconductor lasers,” Phys. Rev. Lett. 78(25), 4745–4748 (1997).
[Crossref]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Physica E (1)

J. M. Gerard and B. Gayral, “InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Other (2)

Q. Gu and Y. Fainman, “Semiconductor Nanolasers,” Cambridge University Press 2017.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of mutually coupled semiconductor nano-lasers.
Fig. 2
Fig. 2 Photon density time series of laser I at F = 14, β = 0.1, II = III = 2Ith wherein detuning Δf = 10 GHz. (a) κinj = 0, (b) κinj = 0.5 × 10−3, (c) κinj = 2.0 × 10−3.
Fig. 3
Fig. 3 Photon density time series at F = 14, β = 0.1, II = III = 2Ith wherein frequency detuning Δf = 10 GHz. (a) κinj = 5.0 × 10−3, (b) κinj = 7.5 × 10−3. Black curves denote laser I; blue curves denote laser II.
Fig. 4
Fig. 4 Oscillation Frequency versus frequency detuning between laser I and laser II, at κinj = 0.8 × 10−3, β = 0.1. (a) II = III = 2Ith, (b) II = 2Ith and III = 4Ith.
Fig. 5
Fig. 5 Time series of photon densities and FFT of laser II at II = 2Ith, III = 4Ith, D = 0.5 cm and κinj = 0.6 × 10−3 with zero detuning.
Fig. 6
Fig. 6 Time series of photon densities and FFT of laser II at II = 2Ith, III = 4Ith, D = 0.5 cm and κinj = 5 × 10−3 with zero detuning.
Fig. 7
Fig. 7 Oscillation Frequency versus bias current of laser-II for κinj = 0.6 × 10−3, II = 2Ith, D = 0.5 cm. From the bottom up: F = 10, β = 0.01 (black squares), F = 10, β = 0.05 (red circles), F = 20, β = 0.1 (green triangles), and F = 30, β = 0.1 (blue diamond) at zero detuning.
Fig. 8
Fig. 8 Oscillation Frequency versus bias current of laser II for κinj = 0.6 × 10−3, II = 2Ith, D = 0.5 cm, F = 10, β = 0.01. From the bottom up the frequency detuning between lasers are 0 GHz (black squares), −10 GHz (red circles), −20 GHz (green triangles), and −50 GHz (blue diamonds).

Tables (1)

Tables Icon

Table 1 Nano-laser device parameters.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d S I,II ( t ) d t = Γ [ F β N I,II ( t ) τ n + G n ( N I,II ( t ) N t h ) S I,II ( t ) ] + 2 κ i n j τ i n S I,II ( t ) S II,I ( t τ i n j ) cos ( θ I,II ( t ) )
d N I,II ( t ) d t = I I,II e V a N I,II ( t ) τ n ( F β + ( 1 β ) ) G n ( N I,II ( t ) N 0 ) S I,II ( t )
d ϕ I,II ( t ) d t = α 2 Γ G n ( N I,II ( t ) N t h ) ± 2 π Δ f κ i n j τ i n S II,I ( t τ i n j ) S I,II ( t ) sin ( θ I,II ( t ) )
θ I,II ( t ) = ± 2 π Δ f t + 2 π f II,I τ i n j + ϕ I,II ( t ) ϕ II,I ( t τ i n j )

Metrics