Abstract

We present the first frequency-doubled neodymium-doped fiber laser generating multi-watt CW power near 450 nm. A bow-tie resonator incorporating a LBO nonlinear crystal is integrated within a Nd-doped fiber laser emitting near 900 nm. This scheme achieves an IR to blue conversion efficiency close to 55% without any active control of the internal resonant cavity. As a result, up to 7.5 W of linearly-polarized blue power is generated, with beam quality factors Mx2 ~1.0 and My2 ~1.5. A simple numerical model has been developed to optimize and analyse the IR to blue conversion efficiency in the resonant cavity. Performance limitations and prospects for further improvements are discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 3.5W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser

X. Ding, R. Wang, H. Zhang, W. Q. Wen, L. Huang, P. Wang, J. Q. Yao, X. Y. Yu, and Z. Li
Opt. Express 16(7) 4582-4587 (2008)

1??W of blue 465-nm radiation generated by frequency doubling of the output of a high-power diode laser in critically phase-matched LiB3O5

D. Woll, B. Beier, K.-J. Boller, R. Wallenstein, M. Hagberg, and S. O’Brien
Opt. Lett. 24(10) 691-693 (1999)

8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm

Rui Zhou, Tieli Zhang, Enbang Li, Xin Ding, Zhiqiang Cai, Baigang Zhang, Wuqi Wen, Peng Wang, and Jianquan Yao
Opt. Express 13(25) 10115-10119 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
    [Crossref] [PubMed]
  2. W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
    [Crossref] [PubMed]
  3. H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
    [Crossref] [PubMed]
  4. N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4.,” Appl. Opt. 49(20), 3864–3868 (2010).
    [Crossref] [PubMed]
  5. I. Courtillot, A. Quessada, R. P. Kovacich, J.-J. Zondy, A. Landragin, A. Clairon, and P. Lemonde, “Efficient cooling and trapping of strontium atoms,” Opt. Lett. 28(6), 468–470 (2003).
    [Crossref] [PubMed]
  6. Z. Quan, Y. Yi, L. Bin, Q. Dapeng, and Z. Ling, “13.2 W laser-diode-pumped Nd:YVO4/LBO blue laser at 457 nm,” J. Opt. Soc. Am. B 26(6), 1238–1242 (2009).
    [Crossref]
  7. J. Rothhardt, T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, T. Gottschall, T. V. Andersen, J. Limpert, and A. Tünnermann, “135 W average-power femtosecond pulses at 520 nm from a frequency-doubled fiber laser system,” Opt. Lett. 36(3), 316–318 (2011).
    [Crossref] [PubMed]
  8. J. Boullet, R. Bello-Doua, R. Dubrasquet, N. Traynor, C. Lecaplain, A. Hideur, J. Lhermite, G. Machinet, C. Médina, and E. Cormier, “Visible and infrared sources based on three-level ytterbium-doped fiber lasers,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FThC5.
  9. B. Leconte, B. Cadier, H. Gilles, S. Girard, T. Robin, and M. Laroche, “Extended tunability of Nd-doped fiber lasers operating at 872-936 nm,” Opt. Lett. 40(17), 4098–4101 (2015).
    [Crossref] [PubMed]
  10. P. H. Pax, V. V. Khitrov, D. R. Drachenberg, G. S. Allen, B. Ward, M. Dubinskii, M. J. Messerly, and J. W. Dawson, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” Opt. Express 24(25), 28633–28647 (2016).
    [Crossref] [PubMed]
  11. C. Bartolacci, M. Laroche, H. Gilles, S. Girard, T. Robin, and B. Cadier, “Generation of picosecond blue light pulses at 464 nm by frequency doubling an Nd-doped fiber based Master Oscillator Power Amplifier,” Opt. Express 18(5), 5100–5105 (2010).
    [Crossref] [PubMed]
  12. P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richard, and J. Nilsson, “80 W green laser based on a frequency-doubled picosecond, single-mode, linearly-polarized fiber laser,” Conference on Lasers and Electro-Optics 2006 Technical Digests (Optical Society of America, Washington, D.C., 2006) CThJ1.
    [Crossref]
  13. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
    [Crossref] [PubMed]
  14. J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
    [Crossref]
  15. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54, µm,” Opt. Lett. 17(9), 640–642 (1992).
    [Crossref] [PubMed]
  16. R. Cieslak and W. A. Clarkson, “Internal resonantly enhanced frequency doubling of continuous-wave fiber lasers,” Opt. Lett. 36(10), 1896–1898 (2011).
    [Crossref] [PubMed]
  17. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  18. B. Leconte, H. Gilles, T. Robin, B. Cadier, and M. Laroche, “Transverse mode selection in a Nd-doped fiber amplifier at 910 nm,” Opt. Express 25(15), 18314–18319 (2017).
    [Crossref] [PubMed]
  19. X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
    [Crossref]

2017 (1)

2016 (2)

2015 (2)

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

B. Leconte, B. Cadier, H. Gilles, S. Girard, T. Robin, and M. Laroche, “Extended tunability of Nd-doped fiber lasers operating at 872-936 nm,” Opt. Lett. 40(17), 4098–4101 (2015).
[Crossref] [PubMed]

2012 (1)

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

2009 (2)

Z. Quan, Y. Yi, L. Bin, Q. Dapeng, and Z. Ling, “13.2 W laser-diode-pumped Nd:YVO4/LBO blue laser at 457 nm,” J. Opt. Soc. Am. B 26(6), 1238–1242 (2009).
[Crossref]

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

2007 (1)

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

2003 (1)

1992 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Allen, G. S.

Andersen, T. V.

Baghdady, J.

Bartolacci, C.

Bellancourt, A.-R.

Bin, L.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Byrd, M.

Cadier, B.

Charn, T. C.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Cieslak, R.

Clairon, A.

Clarkson, W. A.

Cochenour, B. M.

Courtillot, I.

Dapeng, Q.

Dawson, J. W.

Devi, K.

Ding, A.

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

Drachenberg, D. R.

Dubinskii, M.

Dunsby, C.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Ebrahim-Zadeh, M.

Eichler, H.-J.

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

Eidam, T.

French, P.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Gilles, H.

Girard, S.

Gottschall, T.

Guedes, J.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Guerra, N.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Hädrich, S.

Hansen, N.-O.

Hawley, R. G.

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

Hawley, T.

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

Hirohashi, J.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

Huber, G.

Jansen, F.

Johnson, E. G.

Kallmeyer, F.

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

Khitrov, V. V.

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kovacich, R. P.

Kumar, S. C.

Landragin, A.

Laroche, M.

Laurell, F.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

Leconte, B.

Lemonde, P.

Li, W.

Limpert, J.

Ling, Z.

Messerly, M. J.

Miller, K.

Morgan, K.

Osler, S.

Ou, Z. Y.

Pasiskevicius, V.

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

Pax, P. H.

Pereira, S. F.

Polzik, E. S.

Quan, Z.

Quessada, A.

Ragusa, R.

Robin, T.

Rothhardt, J.

Samanta, G. K.

Sparks, H.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Stutzki, F.

Subach, F.

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

Tatla, T.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Telford, W. G.

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

Tünnermann, A.

Verkhusha, V.

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

Wang, S.

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

Wang, X.

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

Ward, B.

Warren, S.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Weichmann, U.

Yi, Y.

Yoshida, N.

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

Zondy, J.-J.

Appl. Opt. (1)

J. Appl. Phys. (2)

J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101(3), 033105 (2007).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Biophotonics (1)

H. Sparks, S. Warren, J. Guedes, N. Yoshida, T. C. Charn, N. Guerra, T. Tatla, C. Dunsby, and P. French, “A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue,” J. Biophotonics 8(1-2), 168–178 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Methods (1)

W. G. Telford, T. Hawley, F. Subach, V. Verkhusha, and R. G. Hawley, “Flow cytometry of fluorescent proteins,” Methods 57(3), 318–330 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Proc. SPIE (1)

X. Wang, F. Kallmeyer, S. Wang, A. Ding, and H.-J. Eichler, “Frequency doubling of focused laser beams for high pulse energy at 471nm,” Proc. SPIE 7194, 71940M (2009).
[Crossref]

Other (2)

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richard, and J. Nilsson, “80 W green laser based on a frequency-doubled picosecond, single-mode, linearly-polarized fiber laser,” Conference on Lasers and Electro-Optics 2006 Technical Digests (Optical Society of America, Washington, D.C., 2006) CThJ1.
[Crossref]

J. Boullet, R. Bello-Doua, R. Dubrasquet, N. Traynor, C. Lecaplain, A. Hideur, J. Lhermite, G. Machinet, C. Médina, and E. Cormier, “Visible and infrared sources based on three-level ytterbium-doped fiber lasers,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FThC5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the blue laser using a neodymium-doped fiber and a SHG resonator. M1 to M2 distance is 108 mm and M3 to M4 distance is 105 mm.
Fig. 2
Fig. 2 Output power and transmission characteristics of a simulated SHG resonator based on bow-tie cavity design, (a) as a function of M2 reflectivity (R1 = 96%) and (b) as a function of M1 reflectivity (R2 = 99%). Incident fundamental power is 15 W, R3 = R4 = 100%, γ = 4.7 × 10−5 W−1, α = 0.
Fig. 3
Fig. 3 (a) Blue power generated at 452 nm as a function of fundamental intracavity power at 904 nm (solid line) and corresponding best-fit quadratic curve (dash line), (b) Intracavity power at 904 nm as a function of launched pump power at 808 nm.
Fig. 4
Fig. 4 Measured spectra of the fundamental intracavity power (a) and SH power (b) at the maximum output power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ω = ( 1 R 1 ) R 2 P inc ( 1 R 1 R 2 ( 1α )( 1 P ω γ 2ω ) ) 2 ,

Metrics