Abstract

Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Actively transparent display with enhanced legibility based on an organic light-emitting diode and a cholesteric liquid crystal blind panel

Jeongho Yeon, Tae-Wook Koh, Hyunsu Cho, Jin Chung, Seunghyup Yoo, and Jun-Bo Yoon
Opt. Express 21(8) 10358-10366 (2013)

Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows

S. Mukherjee, W. L. Hsieh, N. Smith, M. Goulding, and J. Heikenfeld
Appl. Opt. 54(17) 5603-5609 (2015)

Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss

Yi-Bo Zhang, Qing-Dong Ou, Yan-Qing Li, Jing-De Chen, Xin-Dong Zhao, Jian Wei, Zhong-Zhi Xie, and Jian-Xin Tang
Opt. Express 25(14) 15662-15675 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Baetens, B. J. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
    [Crossref]
  2. Samsung’s smart window, http://www.technologyreview.com/view/426662/samsungs-smart-window/ , 1, 2012.
  3. F. C. Krebs, “The new black,” Nat. Mater. 7(10), 766–767 (2008).
    [Crossref] [PubMed]
  4. C. Ma, M. Taya, and C. Xu, “Smart sunglasses based on electrochromic polymers,” Polym. Eng. Sci. 48(11), 2224–2228 (2008).
    [Crossref]
  5. S. Beaupré, J. Dumas, and M. Leclerc, “Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers,” Chem. Mater. 18(17), 4011–4018 (2006).
    [Crossref]
  6. M. A. Invernale, Y. Ding, and G. A. Sotzing, “All-Organic Electrochromic Spandex,” ACS Appl. Mater. Interfaces 2(1), 296–300 (2010).
    [Crossref]
  7. P. M. S. Monk, F. Delage, and S. M. Costa Vieira, “Electrochromic paper: utility of electrochromes incorporated in paper,” Electrochim. Acta 46(13-14), 2195–2202 (2001).
    [Crossref]
  8. P. M. Beaujuge and J. R. Reynolds, “Color control in π-conjugated organic polymers for use in electrochromic devices,” Chem. Rev. 110(1), 268–320 (2010).
    [Crossref] [PubMed]
  9. L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
    [Crossref]
  10. J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
    [Crossref]
  11. S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
    [Crossref]
  12. W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
    [Crossref]
  13. Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
    [Crossref]
  14. S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
    [Crossref]
  15. S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
    [Crossref]
  16. F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
    [Crossref] [PubMed]
  17. W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
    [Crossref] [PubMed]
  18. K. Kanazawa, K. Nakamura, and N. Kobayashi, “High-contrast electroswitching of emission and coloration based on single-molecular fluoran derivatives,” J. Phys. Chem. A 118(31), 6026–6033 (2014).
    [Crossref] [PubMed]
  19. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
    [Crossref] [PubMed]
  20. G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” https://onlinelibrary.wiley.com/doi/full/10.1002/adom.201701382 (2018).
  21. J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
    [Crossref]
  22. J. Penczek, E. F. Kelley, and P. A. Boynton, “General Metrology Framework for determining the Ambient Optical Performance of Flat Panel Displays,” SID Symp. Dig. 46, 727–730 (2015).
    [Crossref]
  23. Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
    [Crossref]

2016 (1)

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

2015 (1)

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

2014 (2)

K. Kanazawa, K. Nakamura, and N. Kobayashi, “High-contrast electroswitching of emission and coloration based on single-molecular fluoran derivatives,” J. Phys. Chem. A 118(31), 6026–6033 (2014).
[Crossref] [PubMed]

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

2012 (2)

F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
[Crossref] [PubMed]

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

2011 (1)

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

2010 (4)

P. M. Beaujuge and J. R. Reynolds, “Color control in π-conjugated organic polymers for use in electrochromic devices,” Chem. Rev. 110(1), 268–320 (2010).
[Crossref] [PubMed]

M. A. Invernale, Y. Ding, and G. A. Sotzing, “All-Organic Electrochromic Spandex,” ACS Appl. Mater. Interfaces 2(1), 296–300 (2010).
[Crossref]

R. Baetens, B. J. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

2009 (1)

J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
[Crossref]

2008 (4)

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

F. C. Krebs, “The new black,” Nat. Mater. 7(10), 766–767 (2008).
[Crossref] [PubMed]

C. Ma, M. Taya, and C. Xu, “Smart sunglasses based on electrochromic polymers,” Polym. Eng. Sci. 48(11), 2224–2228 (2008).
[Crossref]

2006 (1)

S. Beaupré, J. Dumas, and M. Leclerc, “Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers,” Chem. Mater. 18(17), 4011–4018 (2006).
[Crossref]

2005 (1)

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

2001 (1)

P. M. S. Monk, F. Delage, and S. M. Costa Vieira, “Electrochromic paper: utility of electrochromes incorporated in paper,” Electrochim. Acta 46(13-14), 2195–2202 (2001).
[Crossref]

1998 (1)

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Azizian, F.

F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
[Crossref] [PubMed]

Baek, J.-M.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Baetens, R.

R. Baetens, B. J. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Beaujuge, P. M.

P. M. Beaujuge and J. R. Reynolds, “Color control in π-conjugated organic polymers for use in electrochromic devices,” Chem. Rev. 110(1), 268–320 (2010).
[Crossref] [PubMed]

Beaupré, S.

S. Beaupré, J. Dumas, and M. Leclerc, “Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers,” Chem. Mater. 18(17), 4011–4018 (2006).
[Crossref]

Boizot, J.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Boynton, P. A.

J. Penczek, E. F. Kelley, and P. A. Boynton, “General Metrology Framework for determining the Ambient Optical Performance of Flat Panel Displays,” SID Symp. Dig. 46, 727–730 (2015).
[Crossref]

Burkinshaw, S. M.

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Chan, C. T.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Chen, J.-L.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Cheng, P.-P.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Cheng, W.-Y.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Chu, H. Y.

J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
[Crossref]

Costa Vieira, S. M.

P. M. S. Monk, F. Delage, and S. M. Costa Vieira, “Electrochromic paper: utility of electrochromes incorporated in paper,” Electrochim. Acta 46(13-14), 2195–2202 (2001).
[Crossref]

Delage, F.

P. M. S. Monk, F. Delage, and S. M. Costa Vieira, “Electrochromic paper: utility of electrochromes incorporated in paper,” Electrochim. Acta 46(13-14), 2195–2202 (2001).
[Crossref]

Ding, Y.

M. A. Invernale, Y. Ding, and G. A. Sotzing, “All-Organic Electrochromic Spandex,” ACS Appl. Mater. Interfaces 2(1), 296–300 (2010).
[Crossref]

Dumas, J.

S. Beaupré, J. Dumas, and M. Leclerc, “Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers,” Chem. Mater. 18(17), 4011–4018 (2006).
[Crossref]

Field, A. J.

F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
[Crossref] [PubMed]

Fukuoka, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Furuya, H.

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

Ge, W.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Griffiths, J.

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Gustavsen, A.

R. Baetens, B. J. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Hegde, G.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Heo, J.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Heron, B. M.

F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
[Crossref] [PubMed]

Higuchi, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Huh, J.-W.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Invernale, M. A.

M. A. Invernale, Y. Ding, and G. A. Sotzing, “All-Organic Electrochromic Spandex,” ACS Appl. Mater. Interfaces 2(1), 296–300 (2010).
[Crossref]

Jelle, B. J.

R. Baetens, B. J. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Kanazawa, K.

K. Kanazawa, K. Nakamura, and N. Kobayashi, “High-contrast electroswitching of emission and coloration based on single-molecular fluoran derivatives,” J. Phys. Chem. A 118(31), 6026–6033 (2014).
[Crossref] [PubMed]

Kelley, E. F.

J. Penczek, E. F. Kelley, and P. A. Boynton, “General Metrology Framework for determining the Ambient Optical Performance of Flat Panel Displays,” SID Symp. Dig. 46, 727–730 (2015).
[Crossref]

Kilner, C.

F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
[Crossref] [PubMed]

Kim, H. J.

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

Kim, H. N.

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

Kim, J. S.

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

Kim, Y. J.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Kobayashi, N.

K. Kanazawa, K. Nakamura, and N. Kobayashi, “High-contrast electroswitching of emission and coloration based on single-molecular fluoran derivatives,” J. Phys. Chem. A 118(31), 6026–6033 (2014).
[Crossref] [PubMed]

Kolev, D.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Komitov, L.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Krebs, F. C.

F. C. Krebs, “The new black,” Nat. Mater. 7(10), 766–767 (2008).
[Crossref] [PubMed]

Ku, Y.-S.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Kuo, S.-W.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Kwon, J. H.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Lan, K.-W.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Leclerc, M.

S. Beaupré, J. Dumas, and M. Leclerc, “Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers,” Chem. Mater. 18(17), 4011–4018 (2006).
[Crossref]

Lee, J.

J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
[Crossref]

Lee, J. Y.

J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
[Crossref]

Lee, J.-I.

J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
[Crossref]

Lee, K. H.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Lee, K.-C.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Lee, M. H.

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

Lo, K.-L.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Lu, G.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Ma, C.

C. Ma, M. Taya, and C. Xu, “Smart sunglasses based on electrochromic polymers,” Polym. Eng. Sci. 48(11), 2224–2228 (2008).
[Crossref]

Monk, P. M. S.

P. M. S. Monk, F. Delage, and S. M. Costa Vieira, “Electrochromic paper: utility of electrochromes incorporated in paper,” Electrochim. Acta 46(13-14), 2195–2202 (2001).
[Crossref]

Nakamura, K.

K. Kanazawa, K. Nakamura, and N. Kobayashi, “High-contrast electroswitching of emission and coloration based on single-molecular fluoran derivatives,” J. Phys. Chem. A 118(31), 6026–6033 (2014).
[Crossref] [PubMed]

Oh, S.-W.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Ono, M.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Oveisi, H.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Park, M. J.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Penczek, J.

J. Penczek, E. F. Kelley, and P. A. Boynton, “General Metrology Framework for determining the Ambient Optical Performance of Flat Panel Displays,” SID Symp. Dig. 46, 727–730 (2015).
[Crossref]

Phuong, D.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Radhakrishnan, L.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Reynolds, J. R.

P. M. Beaujuge and J. R. Reynolds, “Color control in π-conjugated organic polymers for use in electrochromic devices,” Chem. Rev. 110(1), 268–320 (2010).
[Crossref] [PubMed]

Sato, K.

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

Sheng, P.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Shimomura, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Son, Y. H.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Song, W. J.

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Sotzing, G. A.

M. A. Invernale, Y. Ding, and G. A. Sotzing, “All-Organic Electrochromic Spandex,” ACS Appl. Mater. Interfaces 2(1), 296–300 (2010).
[Crossref]

Suzuki, M.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Suzuki, N.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Taya, M.

C. Ma, M. Taya, and C. Xu, “Smart sunglasses based on electrochromic polymers,” Polym. Eng. Sci. 48(11), 2224–2228 (2008).
[Crossref]

Towns, A. D.

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Tsai, Y.-H.

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Tsutsui, K.

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

Ueno, S.

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

Wang, H.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Weisbuch, C.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Wen, W.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Weng, W.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Xu, C.

C. Ma, M. Taya, and C. Xu, “Smart sunglasses based on electrochromic polymers,” Polym. Eng. Sci. 48(11), 2224–2228 (2008).
[Crossref]

Yamamoto, S.

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

Yamauchi, Y.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Yoon, J.

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

Yoon, T.-H.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. A. Invernale, Y. Ding, and G. A. Sotzing, “All-Organic Electrochromic Spandex,” ACS Appl. Mater. Interfaces 2(1), 296–300 (2010).
[Crossref]

AIP Adv. (1)

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem. Int. Ed. Engl. 49(23), 3956–3959 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Lee, J.-I. Lee, J. Y. Lee, and H. Y. Chu, “Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure,” Appl. Phys. Lett. 94(19), 193305 (2009).
[Crossref]

Chem. Commun. (Camb.) (1)

F. Azizian, A. J. Field, B. M. Heron, and C. Kilner, “Intrinsically thermochromic fluorans,” Chem. Commun. (Camb.) 48(5), 750–752 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

S. Beaupré, J. Dumas, and M. Leclerc, “Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers,” Chem. Mater. 18(17), 4011–4018 (2006).
[Crossref]

Chem. Rev. (1)

P. M. Beaujuge and J. R. Reynolds, “Color control in π-conjugated organic polymers for use in electrochromic devices,” Chem. Rev. 110(1), 268–320 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, “A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions,” Chem. Soc. Rev. 37(8), 1465–1472 (2008).
[Crossref] [PubMed]

Cryst. Growth Des. (1)

S. Yamamoto, H. Furuya, K. Tsutsui, S. Ueno, and K. Sato, “In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application,” Cryst. Growth Des. 8(7), 2256–2263 (2008).
[Crossref]

Curr. Appl. Phys. (1)

Y. H. Son, J. Boizot, Y. J. Kim, M. J. Park, W. J. Song, K. H. Lee, and J. H. Kwon, “Efficiency control of organic light-emitting diode for high contrast ratio performance in active matrix display applications,” Curr. Appl. Phys. 14(5), 697–701 (2014).
[Crossref]

Dyes Pigm. (1)

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Electrochim. Acta (1)

P. M. S. Monk, F. Delage, and S. M. Costa Vieira, “Electrochromic paper: utility of electrochromes incorporated in paper,” Electrochim. Acta 46(13-14), 2195–2202 (2001).
[Crossref]

J. Mater. Chem. (1)

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

J. Phys. Chem. A (1)

K. Kanazawa, K. Nakamura, and N. Kobayashi, “High-contrast electroswitching of emission and coloration based on single-molecular fluoran derivatives,” J. Phys. Chem. A 118(31), 6026–6033 (2014).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Nanotechnology (1)

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Nat. Mater. (1)

F. C. Krebs, “The new black,” Nat. Mater. 7(10), 766–767 (2008).
[Crossref] [PubMed]

Polym. Eng. Sci. (1)

C. Ma, M. Taya, and C. Xu, “Smart sunglasses based on electrochromic polymers,” Polym. Eng. Sci. 48(11), 2224–2228 (2008).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

R. Baetens, B. J. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010).
[Crossref]

Symp. Digest Tech. Papers (1)

Y.-S. Ku, S.-W. Kuo, Y.-H. Tsai, P.-P. Cheng, J.-L. Chen, K.-W. Lan, K.-L. Lo, K.-C. Lee, and W.-Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Symp. Digest Tech. Papers 43(1), 850–852 (2012).
[Crossref]

Other (3)

Samsung’s smart window, http://www.technologyreview.com/view/426662/samsungs-smart-window/ , 1, 2012.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” https://onlinelibrary.wiley.com/doi/full/10.1002/adom.201701382 (2018).

J. Penczek, E. F. Kelley, and P. A. Boynton, “General Metrology Framework for determining the Ambient Optical Performance of Flat Panel Displays,” SID Symp. Dig. 46, 727–730 (2015).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Operation of smart window display

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical transmittance of ECD in bleached state (blue dotted line) and colored state (red solid line) and optical contrast (ΔT) of ECD for the different wavelength range. Inset figures present two chemical state of DATFMF (blue: neutral state, red: oxidized state) and working pictures of ECD on bleached state and colored state. (b) UV-visible absorption spectra of ECD with stepwise increase in applied voltage from 0.0 to 1.9 V. Blue dotted line and red solid line represent absorption spectrum of bleached state (neutral state) and colored state (fully oxidized state), respectively. (c) Photographs of ECD with respect to different applied voltages. (d) Relative transmittance change of ECD according to the applied voltage signal (1 cycle). (e) Transmittance change of ECD at 590 nm in bleached state (applied voltage of 1.7 V) and colored state (applied voltage of 0.0 V) depending on the driving cycle.
Fig. 2
Fig. 2 (a) Optical transmittance of ITO glass, transparent cathode comprising organic layers and full device comprising ITO glass, organic layers, transparent cathode and encapsulation glass. (b) Luminance-current density (L-J) characteristics of bottom and top emission. (c) Current density-voltage (J-V) and luminance-voltage (L-V) characteristics of bottom emission (ITO side emission) and top emission (cathode side emission) of TOLED. (d) Current efficiency-luminance (C.E) and power efficiency-luminance (P.E) characteristics of bottom and top emission. (e) CIE color coordinates of bottom and top emission. (f) Electroluminescence (EL) spectra of bottom and top emission.
Fig. 3
Fig. 3 Simulated (red dotted line) and experimental (blue solid line) transmittance of (a) ECD, (b) TOLED, and (c) smart window display. (d) Simulation results of smart window display with respect to refractive index of adhesive layer.
Fig. 4
Fig. 4 (a) Schematic of smart window display structure, and the operating modes of smart window display (See Visualization 1): (b) Transparent mode (TOLED: off state, ECD: on state), (c) Opaque black mode (TOLED: off state, ECD: on state), (d) dual side emission mode (TOLED: ON state, ECD: OFF state), (e) single side emission mode (TOLED: ON state, ECD: ON state).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ambient CR = L W + L R & T L B + L R & T

Metrics