Abstract

Thermo-optic tuning of whispering gallery modes (WGMs) in a nematic liquid crystal-filled thin-walled capillary tube resonator is reported. WGMs were excited by the evanescent field from a tapered optical fiber. Tapered optical fiber fabrication and reduction of wall thickness of the capillary tube was carried out by a ceramic micro-heater brushing technique. A simple and robust packaging technique is demonstrated to ensure stable and repeatable operation of the device. Tunability of WGMs with temperature was demonstrated with a sensitivity of 267.5 ± 2.5 pm/°C. The demonstrated thermo-optic method for WGMs tuning is potentially useful for many tunable photonic devices and sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tuned whispering gallery mode microresonator based on Kagomé photonic crystal fibers infiltrated with nematic liquid crystals

Fansheng Kong, Bin Yang, Chengkun Yang, Hao Zhang, Bo Liu, Haifeng Liu, and Jie Yu
Appl. Opt. 58(6) 1351-1355 (2019)

Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application

Yan Wang, Hanyang Li, Liyuan Zhao, Yongjun Liu, Shuangqiang Liu, and Jun Yang
Opt. Express 25(2) 918-926 (2017)

Strain-induced spectral tuning of the whispering gallery modes in a cylindrical micro-resonator formed by a polymer optical fiber

Vishnu Kavungal, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, and Yuliya Semenova
Appl. Opt. 56(5) 1339-1345 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 1–51 (2005).
  2. V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [Crossref]
  3. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007).
    [Crossref] [PubMed]
  4. N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “Design and optimization of liquid core optical ring resonator for refractive index sensing,” Appl. Opt. 50(20), 3615–3621 (2011).
    [Crossref] [PubMed]
  5. M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21(4), 697–705 (2004).
    [Crossref]
  6. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
    [Crossref] [PubMed]
  7. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  8. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007).
    [Crossref]
  9. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24(12), 2988–2997 (2007).
    [Crossref]
  10. I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310, 212–216 (2014).
    [Crossref]
  11. A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
    [Crossref]
  12. M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
    [Crossref] [PubMed]
  13. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  14. L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
    [Crossref]
  15. J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
    [Crossref]
  16. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [Crossref]
  17. S. Lane, F. Marsiglio, Y. Zhi, and A. Meldrum, “Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment,” Appl. Opt. 54(6), 1331–1340 (2015).
    [Crossref] [PubMed]
  18. B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
    [Crossref]
  19. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  20. L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
    [Crossref]
  21. J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
    [Crossref]
  22. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  23. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  24. S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
    [Crossref]
  25. V. R. Anand, S. Mathew, B. Samuel, P. Radhakrishnan, and M. Kailasnath, “Thermo-optic tuning of whispering gallery mode lasing from a dye-doped hollow polymer optical fiber,” Opt. Lett. 42(15), 2926–2929 (2017).
    [Crossref] [PubMed]
  26. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
    [Crossref] [PubMed]
  27. Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
    [Crossref] [PubMed]
  28. Z. Liu, L. Liu, Z. Zhu, Y. Zhang, Y. Wei, X. Zhang, E. Zhao, Y. Zhang, J. Yang, and L. Yuan, “Whispering gallery mode temperature sensor of liquid microresonastor,” Opt. Lett. 41(20), 4649–4652 (2016).
    [Crossref] [PubMed]
  29. Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
    [Crossref]
  30. H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett. 14(8), 1118–1120 (2002).
    [Crossref]
  31. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [Crossref] [PubMed]
  32. J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
    [Crossref]
  33. K. Yang and S. T. Wu, “Fundamentals of liquid crystal devices” (John Wiley & Sons, 2006).
  34. J. N. Ptasinski, I. Khoo, and Y. Fainman, “Nematic Liquid Crystals for Temperature Stabilization of Silicon Photonics,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2014), paper JT3A.20.
  35. C.-L. Lee, H.-Y. Ho, J.-H. Gu, T.-Y. Yeh, and C.-H. Tseng, “Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids,” Opt. Lett. 40(4), 459–462 (2015).
    [Crossref] [PubMed]
  36. S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37(5), 863–865 (2012).
    [Crossref] [PubMed]
  37. M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13-15), 1937–1950 (2016).
    [Crossref]
  38. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
    [Crossref] [PubMed]
  39. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]
  40. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  41. A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
    [Crossref] [PubMed]
  42. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  43. V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

2017 (2)

2016 (4)

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13-15), 1937–1950 (2016).
[Crossref]

Z. Liu, L. Liu, Z. Zhu, Y. Zhang, Y. Wei, X. Zhang, E. Zhao, Y. Zhang, J. Yang, and L. Yuan, “Whispering gallery mode temperature sensor of liquid microresonastor,” Opt. Lett. 41(20), 4649–4652 (2016).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
[Crossref]

2015 (3)

2014 (3)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310, 212–216 (2014).
[Crossref]

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

2013 (2)

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

2012 (3)

S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37(5), 863–865 (2012).
[Crossref] [PubMed]

A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (2)

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
[Crossref]

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “Design and optimization of liquid core optical ring resonator for refractive index sensing,” Appl. Opt. 50(20), 3615–3621 (2011).
[Crossref] [PubMed]

2010 (3)

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
[Crossref]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

2009 (2)

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
[Crossref] [PubMed]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

2008 (2)

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (5)

2006 (3)

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

2005 (2)

B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 1–51 (2005).

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

2004 (3)

2002 (1)

H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett. 14(8), 1118–1120 (2002).
[Crossref]

Ahmed, S. S.

Anand, V. R.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Brambilla, G.

Cardenas, J.

Carmon, T.

Chen, Q.-F.

A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
[Crossref]

Chen, Y.

Chen, Y. H.

Chijioke, A.

A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
[Crossref]

Chormaic, S. N.

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Chu, P. K.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dong, C.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Dulashko, Y.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Fan, X.

Farrell, G.

A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
[Crossref] [PubMed]

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

Finazzi, V.

Foreman, M. R.

Gaddam, V.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Gong, Q.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gong, Y.

Gorodetsky, M. L.

Grudinin, I. S.

Gu, J.-H.

Guha, B.

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Han, M.

Han, Z. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
[Crossref]

L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Ho, H.-Y.

Huang, D.

L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
[Crossref]

Huang, G.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Humar, M.

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13-15), 1937–1950 (2016).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24(12), 2988–2997 (2007).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 1–51 (2005).

Jiang, L.

Jiang, X. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Jin, W. L.

Kailasnath, M.

Kavungal, V.

A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
[Crossref] [PubMed]

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

Kaya Özdemir, S.

L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Laine, J. P.

H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett. 14(8), 1118–1120 (2002).
[Crossref]

Lane, P. A.

H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett. 14(8), 1118–1120 (2002).
[Crossref]

Lane, S.

Lee, C.-L.

Li, B. B.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, H.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Li, Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Lin, N.

Lipson, M.

Liu, L.

Liu, M.

L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
[Crossref]

Liu, S.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Liu, Y.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Liu, Z.

Lu, Y.

Lu, Y. Q.

Mahmood, A.

Maleki, L.

Mallik, A. K.

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

Marsiglio, F.

Mathew, S.

Matsko, A. B.

Matsko, B.

B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 1–51 (2005).

Mei, Y.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Meldrum, A.

Nam, S. H.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Nett, R.

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

Nevsky, A. Yu.

A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
[Crossref]

Ostendorf, A.

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

Oveys, H.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
[Crossref]

Özdemir, S. K.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Özel, B.

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Qiu, S. J.

Radhakrishnan, P.

Rao, Y. J.

Richardson, D.

Samuel, B.

Savchenkov, A. A.

Schiller, S.

A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
[Crossref]

Schweiger, G. S.

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

Semenova, Y.

A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
[Crossref] [PubMed]

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

Shi, L.

L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
[Crossref]

Strekalov, D.

B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 1–51 (2005).

Sumetsky, M.

Suter, J. D.

Tapalian, H. C.

H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett. 14(8), 1118–1120 (2002).
[Crossref]

Teraoka, I.

I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310, 212–216 (2014).
[Crossref]

Tsai, H. L.

Tseng, C.-H.

Vahala, K.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vollmer, F.

Wang, A.

Wang, J.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Wang, Q. Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, S.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Wang, Y.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Ward, J. M.

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Wei, Y.

Weigel, T.

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

White, I. M.

Windeler, R. S.

Wu, Q.

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

Wu, Y.

Xiao, H.

Xiao, L.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Xiao, Y.-F.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Xu, F.

Yang, J.

Yang, L.

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
[Crossref]

L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Yang, Y.

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Yeh, T.-Y.

Yin, S.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

Yu, N.

Yuan, L.

Zhan, T.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, E.

Zhao, L.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Zhi, Y.

Zhu, H.

Zhu, J.

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
[Crossref]

L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Zhu, T.

L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
[Crossref]

Zhu, Z.

Appl. Opt. (3)

Appl. Phys. Lett. (7)

L. He, Ş. Kaya Özdemir, J. Zhu, and L. Yang, “Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators,” Appl. Phys. Lett. 96(22), 221101 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99(17), 171101 (2011).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

IEEE Photonics J. (1)

L. Shi, T. Zhu, D. Huang, and M. Liu, “Thermo–optic tuning of integrated polymethyl methacrylate sphere whispering gallery mode resonator,” IEEE Photonics J. 8(5), 2701307 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photonics Technol. Lett. 17(11), 2391–2393 (2005).
[Crossref]

H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett. 14(8), 1118–1120 (2002).
[Crossref]

IPN Progress Report (1)

B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 1–51 (2005).

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (2)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–547 (2014).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Liq. Cryst. (1)

M. Humar, “Liquid-crystal-droplet optical microcavities,” Liq. Cryst. 43(13-15), 1937–1950 (2016).
[Crossref]

Meas. Sci. Technol. (1)

B. Özel, R. Nett, T. Weigel, G. S. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21(9), 094015 (2010).
[Crossref]

Opt. Commun. (1)

I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310, 212–216 (2014).
[Crossref]

Opt. Express (8)

Opt. Lett. (7)

A. Mahmood, V. Kavungal, S. S. Ahmed, G. Farrell, and Y. Semenova, “Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid,” Opt. Lett. 40(21), 4983–4986 (2015).
[Crossref] [PubMed]

Z. Liu, L. Liu, Z. Zhu, Y. Zhang, Y. Wei, X. Zhang, E. Zhao, Y. Zhang, J. Yang, and L. Yuan, “Whispering gallery mode temperature sensor of liquid microresonastor,” Opt. Lett. 41(20), 4649–4652 (2016).
[Crossref] [PubMed]

V. R. Anand, S. Mathew, B. Samuel, P. Radhakrishnan, and M. Kailasnath, “Thermo-optic tuning of whispering gallery mode lasing from a dye-doped hollow polymer optical fiber,” Opt. Lett. 42(15), 2926–2929 (2017).
[Crossref] [PubMed]

C.-L. Lee, H.-Y. Ho, J.-H. Gu, T.-Y. Yeh, and C.-H. Tseng, “Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids,” Opt. Lett. 40(4), 459–462 (2015).
[Crossref] [PubMed]

S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37(5), 863–865 (2012).
[Crossref] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Chijioke, Q.-F. Chen, A. Yu. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. B 85(5), 053814 (2012).
[Crossref]

Other (3)

K. Yang and S. T. Wu, “Fundamentals of liquid crystal devices” (John Wiley & Sons, 2006).

J. N. Ptasinski, I. Khoo, and Y. Fainman, “Nematic Liquid Crystals for Temperature Stabilization of Silicon Photonics,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2014), paper JT3A.20.

V. Kavungal, G. Farrell, Q. Wu, A. K. Mallik, and Y. Semenova, “A packaged whispering gallery mode strain sensor based on a polymer-wire cylindrical micro resonator,” J. Lightw. Technol.in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the packaging process: (a) Capillary tube attached to the glass substrate, (b) Maximizing the coupling efficiency between the tapered optical fiber and capillary tube resonator, and (c) Immobilizing the coupled system on a glass substrate.
Fig. 2
Fig. 2 (a) Selected WGM resonance dip of the packaged device before and after the vibration test. (b) Experimental set up for vibration tests.
Fig. 3
Fig. 3 Experimental WGM spectra of the air core and liquid crystal filled thin-walled micro-capillary.
Fig. 4
Fig. 4 Transmission spectra of the LC-filled WGM resonator with (a) increasing and (b) decreasing temperature. There is an average spectral shift of 3.23 nm for the temperature change from of 26 to 40 °C.
Fig. 5
Fig. 5 Spectral shift experienced by a selected WGM resonance [p2 in Fig. 4] with increasing and decreasing temperature.
Fig. 6
Fig. 6 The resonance wavelength [p2] plotted against time as the temperature was cycled, for elevated temperatures of 35°C and 45°C from room temperature.
Fig. 7
Fig. 7 (a) Selected WGM resonance dip of an air-core capillary tube resonator with increasing temperature. (b) Linear fit of the measured resonance wavelength data with increasing temperature.

Tables (1)

Tables Icon

Table 1 Sensitivity comparison of WGM temperature sensors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D eff = λ 2 π n eff FSR
DL= R S
R=3σ σ amplnoise 2 + σ tempinduced 2 + σ spectres 2
σ amplnoise Δλ 4.5 ( SNR ) 1 4

Metrics