Abstract

The performance of a space-borne water vapour and temperature lidar exploiting the vibrational and pure rotational Raman techniques in the ultraviolet is simulated. This paper discusses simulations under a variety of environmental and climate scenarios. Simulations demonstrate the capability of Raman lidars deployed on-board low-Earth-orbit satellites to provide global-scale water vapour mixing ratio and temperature measurements in the lower to middle troposphere, with accuracies exceeding most observational requirements for numerical weather prediction (NWP) and climate research applications. These performances are especially attractive for measurements in the low troposphere in order to close the most critical gaps in the current earth observation system. In all climate zones, considering vertical and horizontal resolutions of 200 m and 50 km, respectively, mean water vapour mixing ratio profiling precision from the surface up to an altitude of 4 km is simulated to be 10%, while temperature profiling precision is simulated to be 0.40-0.75 K in the altitude interval up to 15 km. Performances in the presence of clouds are also simulated. Measurements are found to be possible above and below cirrus clouds with an optical thickness of 0.3. This combination of accuracy and vertical resolution cannot be achieved with any other space borne remote sensing technique and will provide a breakthrough in our knowledge of global and regional water and energy cycles, as well as in the quality of short- to medium-range weather forecasts. Besides providing a comprehensive set of simulations, this paper also provides an insight into specific possible technological solutions that are proposed for the implementation of a space-borne Raman lidar system. These solutions refer to technological breakthroughs gained during the last decade in the design and development of specific lidar devices and sub-systems, primarily in high-power, high-efficiency solid-state laser sources, low-weight large aperture telescopes, and high-gain, high-quantum efficiency detectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

10 April 2018: Typographical corrections were made to the abstract, the body text, and the captions of Figs. 3 and 4.


OSA Recommended Articles
Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations

Albert Ansmann, Ulla Wandinger, Olivier Le Rille, Dulce Lajas, and Anne Grete Straume
Appl. Opt. 46(26) 6606-6622 (2007)

Optimized retrieval method for atmospheric temperature profiling based on rotational Raman lidar

Qing Yan, Yufeng Wang, Tianle Gao, Fei Gao, Huige Di, Yuehui Song, and Dengxin Hua
Appl. Opt. 58(19) 5170-5178 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Intergovernmental Panel on Climate Change, “Climate Change 2013: The physical science basis,” in 5th Assessment Report, IPCC WGI AR5, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Cambridge University, 2013) Cambridge, U. K.
  2. Intergovernmental Panel on Climate Change, “Climate Change 2014: Impacts, adaptation, and vulnerability,” in 5th Assessment Report, IPCC WGII AR5, Technical Summary, Coordinating Lead Authors: C. Field, V. Barros, K. Mach, and M. Mastrandrea, available at http://www.ipcc.ch/report/ar5/wg2 (IPCC, 2014), Geneva, Switzerland.
  3. Intergovernmental Panel on Climate Change, “Climate Change 2014: Synthesis Report” in 5th Assessment Report, Working Groups I, II and III, Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.) (IPCC, 2014) Geneva, Switzerland, 151 pp.
  4. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
    [Crossref]
  5. N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124(8), 1767–1785 (1996).
    [Crossref]
  6. S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
    [Crossref]
  7. L. Bengtsson, K. I. Hodges, and S. Hagemann, “Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(5), 456–471 (2004).
    [Crossref]
  8. K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
    [Crossref]
  9. S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
    [Crossref]
  10. V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
    [Crossref]
  11. E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
    [Crossref]
  12. S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
    [Crossref]
  13. C. Cardinali and S. Healy, “Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics,” Q. J. R. Meteorol. Soc. 140(684), 2315–2320 (2014).
    [Crossref]
  14. P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136(653), 1972–1990 (2010).
    [Crossref]
  15. P. Vergados, A. J. Mannucci, and C. O. Ao, “Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets,” J. Geophys. Res. Atmos. 119(12), 7718–7731 (2014).
    [Crossref]
  16. P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption lidar: performance simulations,” Appl. Opt. 45(11), 2474–2494 (2006).
    [Crossref] [PubMed]
  17. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31(16), 3068–3082 (1992).
    [Crossref] [PubMed]
  18. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
    [Crossref] [PubMed]
  19. I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt. 41(30), 6451–6462 (2002).
    [Crossref] [PubMed]
  20. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
    [Crossref] [PubMed]
  21. A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
    [Crossref] [PubMed]
  22. A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
    [Crossref]
  23. P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
    [Crossref]
  24. P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
    [Crossref]
  25. P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
    [Crossref]
  26. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
    [Crossref]
  27. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
    [Crossref] [PubMed]
  28. T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
    [Crossref]
  29. E. Hammann and A. Behrendt, “Parametrization of optimum filter passbands for rotational Raman temperature measurements,” Opt. Express 23(24), 30767–30782 (2015).
    [Crossref] [PubMed]
  30. D. N. Whiteman, R. Kurt, and R. Scott, “Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar,” J. Atmos. Ocean. Technol. 27(11), 1781–1801 (2010).
    [Crossref]
  31. B. Liu, Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, and W. Welch, “Compact airborne Raman lidar for profiling aerosol, water vapor and clouds,” Opt. Express 22(17), 20613–20621 (2014).
    [Crossref] [PubMed]
  32. D. Wu, Z. Wang, P. Wechsler, N. Mahon, M. Deng, B. Glover, M. Burkhart, W. Kuestner, and B. Heesen, “Airborne compact rotational Raman lidar for temperature measurement,” Opt. Express 24(18), A1210–A1223 (2016).
    [Crossref] [PubMed]
  33. World Meteorological Organisation (WMO), Expert Team, Commission on Basic Systems, Working Group on Satellites, Third session, Final Report, No. 1 (World Meteorological Organization, 1998), p. 73.
  34. CEOS, WMO On-line Database, Version 2.5, Observational requirements, http://altostratus.wmo.ch/sat/stations/_asp_htx_idc/Requirements.asp (World Meteorological Organization, 2003).
  35. GCOS 2016 Implementation Plan, WMO GCOS-200 (GOOS-214), https://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/programme/brochure/GCOS-200_OnlineVersion.pdf?PlowENiCc1RGh9ReoeAoGBT0QhnJYm6_ (World Meteorological Organization, 2016)
  36. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31(16), 3068–3082 (1992).
    [Crossref] [PubMed]
  37. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
    [Crossref] [PubMed]
  38. P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
    [Crossref]
  39. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Vol. 102 of Springer Series in Optical Sciences, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.
  40. E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
    [Crossref]
  41. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
    [Crossref] [PubMed]
  42. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15(13), 746–748 (1990).
    [Crossref] [PubMed]
  43. R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “The use of Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48(20), 3903–3914 (2009).
    [Crossref] [PubMed]
  44. R. J. List, ed., Smithsonian Meteorological Tables, 6th ed. (Smithsonian Institution, 1951), p. 527.
  45. World Meteorological Organization, Guide to Meteorological Instruments and Methods of Observation, Appendix 4B, WMO-No. 8, CIMO Guide, (World Meteorological Organization, 2008) Geneva.
  46. D. M. Murphy and T. Koop, “Review of the vapour pressures of ice and supercooled water for atmospheric applications,” Quart. J. Royal Met. Soc. 131(608), 1539–1565 (2005).
    [Crossref]
  47. W. P. Elliott and D. J. Gaffen, “Effects of conversion algorithms on reported upper air dewpoint depressions,” Bull. Am. Meteorol. Soc. 74(7), 1323–1325 (1993).
    [Crossref]
  48. D. J. Carson, “The development of a dry inversion-capped convectively unstable boundary layer,” Q. J. R. Meteorol. Soc. 99(421), 450–467 (1973).
    [Crossref]
  49. ESA, “ARMA Reference Model of the Atmosphere,” in Technical Report APP-FP/99–11239/AC/ac (European Space Agency, 1999).
  50. D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
    [Crossref]
  51. S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
    [Crossref]
  52. X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
    [Crossref]
  53. A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
    [Crossref]
  54. K. Gazeas, G. Tzeremes, and E. Armandillo, “Optical study of the laser beam propagation on Nd:YAG crystal slab for space LIDAR missions,” Rev. Boliv. Fís. 20s, 36–38 (2011).
  55. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).
  56. G. Wagner, V. Wulfmeyer, and A. Behrendt, “Detailed performance modeling of a pulsed high-power single-frequency Ti:Sapphire laser,” Appl. Opt. 50(31), 5921–5937 (2011).
    [Crossref] [PubMed]
  57. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Frequency stabilized, diode pumped Nd:YAG laser with up to 0.5 J pulse energy and average output powers of 100W,” in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 57–60.
  58. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005).
    [Crossref] [PubMed]
  59. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21(15), 1150–1152 (1996).
    [Crossref] [PubMed]
  60. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  61. S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
    [Crossref]
  62. S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
    [Crossref]
  63. C. F. Lillie, “Large Deployable Telescopes for Future Space Observatories,” Proc. SPIE 5899, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, 58990D (International Society for Optical Engineering, 2005).
    [Crossref]
  64. F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
    [Crossref]
  65. A. Zuccaro Marchi, F. D’Amato, D. Gallieni, R. Biasi, M. Molina, F. Duò, N. Ruder, P. Salinari, F. Lisi, A. Riccardi, L. Gambicori, F. Simonetti, and J. P. N. Pereira do Carmo, “Technological Developments for Ultra-lightweight, Large aperture, Deployable mirror for space telescopes”, presented at the International Conference on Space Optics 2010, Rhodes, Greece, 4 - 8 October 2010.
  66. H. Hemmati, Y. Chen, and I. Crossfield, “Telescope Wavefront Aberration Compensation with a Deformable Mirror in an Adaptive Optics System,” Free-Space Laser Communication Technologies XVIII, edited by G. Stephen Mecherle, Proc. SPIE 6105, 61050O, 0277–786X/06/$15 (International Society for Optical Engineering, 2006).
  67. J. V. Sandusky, D. J. Hoppe, and M. J. Britcliffe, “Deep Space Optical reception Antenna (DSORA),” in JPL’s IND Progress Report (NASA, 2000) 42–143, 1–11.
  68. P. Mazzinghi, V. Bratina, D. Ferruzzi, L. Gambicorti, F. Simonetti, A. Zuccaro Marchi, P. Salinari, F. Lisi, M. Olivier, A. Bursi, and J. Pereira, “An Ultra-lightweight, Large Aperture, Deployable telescope for Advanced Lidar Applications”, in Proceedings of the 6th Internatational Conference on Space Optics, ESA SP-621 (European Space Agency, 2006).
  69. J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
    [Crossref]
  70. Y. Arshinov and S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38(21), 4635–4638 (1999).
    [Crossref] [PubMed]
  71. D. N. Whiteman, J. R. Potter, R. Tola, I. Veselovskii, M. Cadirola, K. Rush and J. Comer, “Improvements in Raman Lidar Measurements Using New Interference Filter Technology,” in NASA Technical Report, Paper No. ICNMM2006–96123, Paper Id: 20060026169, NASA Technical Reports Server - NTRS (NASA, 2006).
  72. M. Scobey, P. Egerton, R. Fortenberry, and A. Czajkowski, “Ultra-narrowband Optical Bandpass Filters with Large Format and Improved Temperature Stability,” in Alluxa White Paper Series. http://www.alluxa.com/learning-center (2013).
  73. S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
    [Crossref]
  74. J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
    [Crossref]
  75. E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
    [Crossref]
  76. U. Wandinger, “Multiple-scattering influence on extinction and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37(3), 417–427 (1998).
    [Crossref] [PubMed]
  77. A. Macke, “Scattering of Light by Irregular Ice Crystals in Three-dimensional Inhomogeneous Cirrus Clouds,” in Proceedings of the Eighth Conference on Atmospheric Radiation (American Meteorological Society, 1994), pp. 304–306.
  78. J. Kar, M. A. Vaughan, K.-P. Lee, J. L. Tackett, M. A. Avery, A. Garnier, B. J. Getzewich, W. H. Hunt, D. Josset, Z. Liu, P. L. Lucker, B. Magill, A. H. Omar, J. Pelon, R. R. Rogers, T. D. Toth, C. R. Trepte, J.-P. Vernier, D. M. Winker, and S. A. Young, “CALIPSO Lidar Calibration at 532 nm: Version 4 Nighttime Algorithm”, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-365 (2017).
  79. W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
    [Crossref]
  80. C. Seckar, L. Guy, A. Di Fronzo, and C. Weimer, “Performance Testing of an Active Boresight Mechanism for Use in the CALIPSO Spaceborne Lidar Mission”. Optomechanics, A. E. Hatheway, Ed., Proc. SPIE 5877, 319–330 (International Society for Optical Engineering, 2005).
  81. H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
    [Crossref]
  82. H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
    [Crossref]
  83. GCOS (Global Climate Observing System) Reference Upper-Air Network, (GRUAN), http://www.wmo.int/pages/prog/gcos/index.php?name=GRUAN .
  84. F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
    [Crossref]
  85. D. D. Venable, D. N. Whiteman, M. N. Calhoun, A. O. Dirisu, R. M. Connell, and E. Landulfo, “Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system,” Appl. Opt. 50(23), 4622–4632 (2011).
    [Crossref] [PubMed]
  86. V. Simeonov, “First-Principles Calibrated Water Vapor Raman Lidar for Atmospheric Humidity Profiling,” presented at the Eighth Symposium on Lidar Atmospheric Applications, 97th AMS Annual Meeting, 22–26 January 2017, Seattle, WA, USA.
  87. É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
    [Crossref]
  88. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
    [Crossref]
  89. European Space Agency, ADM-Aeolus Science Report - SP-1311, ISBN 978–92–9221–404–3, ISSN 0379–6566 (European Space Agency, 2008).
  90. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
    [Crossref]
  91. I. Bekey, “An extremely large yet ultra-light weight space telescope and array,” (NASA Institute for Advanced Concepts), http://www.niac.usra.edu/studies/ (1999).
  92. N. J. Woolf, “Very large optics for the study of extrasolar terrestrial planets,” (NASA Institute for Advanced Concepts), http://www.niac.usra.edu/studies/ (1999).
  93. A. L. Palisoc, “Large telescope using a holographically corrected membrane mirror,” (NASA Institute for Advanced Concepts), http://www.niac.usra.edu/studies/ (2000).

2017 (3)

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

2016 (5)

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

D. Wu, Z. Wang, P. Wechsler, N. Mahon, M. Deng, B. Glover, M. Burkhart, W. Kuestner, and B. Heesen, “Airborne compact rotational Raman lidar for temperature measurement,” Opt. Express 24(18), A1210–A1223 (2016).
[Crossref] [PubMed]

2015 (5)

E. Hammann and A. Behrendt, “Parametrization of optimum filter passbands for rotational Raman temperature measurements,” Opt. Express 23(24), 30767–30782 (2015).
[Crossref] [PubMed]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

2014 (5)

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref] [PubMed]

B. Liu, Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, and W. Welch, “Compact airborne Raman lidar for profiling aerosol, water vapor and clouds,” Opt. Express 22(17), 20613–20621 (2014).
[Crossref] [PubMed]

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

C. Cardinali and S. Healy, “Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics,” Q. J. R. Meteorol. Soc. 140(684), 2315–2320 (2014).
[Crossref]

P. Vergados, A. J. Mannucci, and C. O. Ao, “Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets,” J. Geophys. Res. Atmos. 119(12), 7718–7731 (2014).
[Crossref]

2013 (3)

K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
[Crossref]

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

2012 (1)

2011 (4)

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

G. Wagner, V. Wulfmeyer, and A. Behrendt, “Detailed performance modeling of a pulsed high-power single-frequency Ti:Sapphire laser,” Appl. Opt. 50(31), 5921–5937 (2011).
[Crossref] [PubMed]

K. Gazeas, G. Tzeremes, and E. Armandillo, “Optical study of the laser beam propagation on Nd:YAG crystal slab for space LIDAR missions,” Rev. Boliv. Fís. 20s, 36–38 (2011).

D. D. Venable, D. N. Whiteman, M. N. Calhoun, A. O. Dirisu, R. M. Connell, and E. Landulfo, “Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system,” Appl. Opt. 50(23), 4622–4632 (2011).
[Crossref] [PubMed]

2010 (3)

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136(653), 1972–1990 (2010).
[Crossref]

D. N. Whiteman, R. Kurt, and R. Scott, “Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar,” J. Atmos. Ocean. Technol. 27(11), 1781–1801 (2010).
[Crossref]

2009 (6)

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[Crossref]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “The use of Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48(20), 3903–3914 (2009).
[Crossref] [PubMed]

2008 (2)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

2007 (2)

S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
[Crossref]

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[Crossref]

2006 (2)

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption lidar: performance simulations,” Appl. Opt. 45(11), 2474–2494 (2006).
[Crossref] [PubMed]

2005 (3)

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
[Crossref]

D. M. Murphy and T. Koop, “Review of the vapour pressures of ice and supercooled water for atmospheric applications,” Quart. J. Royal Met. Soc. 131(608), 1539–1565 (2005).
[Crossref]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005).
[Crossref] [PubMed]

2004 (5)

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

L. Bengtsson, K. I. Hodges, and S. Hagemann, “Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(5), 456–471 (2004).
[Crossref]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

2003 (2)

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
[Crossref] [PubMed]

2002 (2)

2000 (2)

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

1999 (1)

1998 (1)

1997 (1)

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

1996 (2)

N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124(8), 1767–1785 (1996).
[Crossref]

V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21(15), 1150–1152 (1996).
[Crossref] [PubMed]

1993 (1)

W. P. Elliott and D. J. Gaffen, “Effects of conversion algorithms on reported upper air dewpoint depressions,” Bull. Am. Meteorol. Soc. 74(7), 1323–1325 (1993).
[Crossref]

1992 (3)

1990 (1)

1973 (1)

D. J. Carson, “The development of a dry inversion-capped convectively unstable boundary layer,” Q. J. R. Meteorol. Soc. 99(421), 450–467 (1973).
[Crossref]

Adam, S.

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

Althausen, D.

Andrae, U.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Ansmann, A.

Ao, C. O.

P. Vergados, A. J. Mannucci, and C. O. Ao, “Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets,” J. Geophys. Res. Atmos. 119(12), 7718–7731 (2014).
[Crossref]

Armandillo, E.

K. Gazeas, G. Tzeremes, and E. Armandillo, “Optical study of the laser beam propagation on Nd:YAG crystal slab for space LIDAR missions,” Rev. Boliv. Fís. 20s, 36–38 (2011).

Arpagaus, M.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Arshinov, Y.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Y. Arshinov and S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38(21), 4635–4638 (1999).
[Crossref] [PubMed]

Arshinov, Y. F.

Assion, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Avgoustoglou, E.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Balmaseda, M. A.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Balsamo, G.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Barker, H. W.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Barnes, J. E.

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

Bauer, H.

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
[Crossref]

Bauer, H.-S.

K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
[Crossref]

Bauer, P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Baumgart, R.

Bechtold, P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Begbie, R.

Behrendt, A.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

E. Hammann and A. Behrendt, “Parametrization of optimum filter passbands for rotational Raman temperature measurements,” Opt. Express 23(24), 30767–30782 (2015).
[Crossref] [PubMed]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

G. Wagner, V. Wulfmeyer, and A. Behrendt, “Detailed performance modeling of a pulsed high-power single-frequency Ti:Sapphire laser,” Appl. Opt. 50(31), 5921–5937 (2011).
[Crossref] [PubMed]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption lidar: performance simulations,” Appl. Opt. 45(11), 2474–2494 (2006).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
[Crossref] [PubMed]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

Beljaars, A.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Beljaars, A. C. M.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Bengtsson, L.

L. Bengtsson, K. I. Hodges, and S. Hagemann, “Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(5), 456–471 (2004).
[Crossref]

Berger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Berrisford, P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Bidlot, J.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Bobrovnikov, S.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Y. Arshinov and S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38(21), 4635–4638 (1999).
[Crossref] [PubMed]

Bobrovnikov, S. M.

Bormann, N.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Bösenberg, J.

Bratina, V.

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

Burkhart, M.

Cacciani, M.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

Cadeddu, M. P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Cai, Y.

Calhoun, M. N.

Calpini, B.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Campbell, J. R.

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

Cardinali, C.

C. Cardinali and S. Healy, “Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics,” Q. J. R. Meteorol. Soc. 140(684), 2315–2320 (2014).
[Crossref]

Carson, D. J.

D. J. Carson, “The development of a dry inversion-capped convectively unstable boundary layer,” Q. J. R. Meteorol. Soc. 99(421), 450–467 (1973).
[Crossref]

Ceccaldi, M.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Chepfer, H.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Christensen, O. B.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Clampin, M.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Clayton, M.

Clerbaux, N.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Cole, J.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Colette, A.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Connell, R. M.

Crook, N. A.

N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124(8), 1767–1785 (1996).
[Crossref]

Damzen, M. J.

David, D. E.

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[Crossref]

De Rosa, B.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

de Rosnay, P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Dee, D. P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136(653), 1972–1990 (2010).
[Crossref]

Delanoë, J.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Delsol, C.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Demoz, B. B.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Deng, M.

Déqué, M.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Di Girolamo, P.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption lidar: performance simulations,” Appl. Opt. 45(11), 2474–2494 (2006).
[Crossref] [PubMed]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
[Crossref]

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Dierer, S.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Dinoev, T.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Dirisu, A. O.

Domenech, C.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Donovan, D. P.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Dörnbrack, A.

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

Doyon, R.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Dragani, R.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Dumitrache, R.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Ehret, G.

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Elliott, W. P.

W. P. Elliott and D. J. Gaffen, “Effects of conversion algorithms on reported upper air dewpoint depressions,” Bull. Am. Meteorol. Soc. 74(7), 1323–1325 (1993).
[Crossref]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Eyre, J. R.

S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
[Crossref]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Ferrare, R.

Ferrare, R. A.

Ferretti, R.

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

Fix, A.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Fuentes, M.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Fujiwara, M.

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

Fukuda, S.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Gaffen, D. J.

W. P. Elliott and D. J. Gaffen, “Effects of conversion algorithms on reported upper air dewpoint depressions,” Bull. Am. Meteorol. Soc. 74(7), 1323–1325 (1993).
[Crossref]

Gambicorti, L.

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

Garand, L.

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

Gardner, J. P.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Gazeas, K.

K. Gazeas, G. Tzeremes, and E. Armandillo, “Optical study of the laser beam propagation on Nd:YAG crystal slab for space LIDAR missions,” Rev. Boliv. Fís. 20s, 36–38 (2011).

Geer, A. J.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Geiger, S.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Gérard, É.

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

Getzewich, B. J.

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

Ghanbari, S.

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Glover, B.

Gobiet, A.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Goergen, K.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Grazzini, F.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Greenhouse, M. A.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Gu, Y.

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

Hagemann, S.

L. Bengtsson, K. I. Hodges, and S. Hagemann, “Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(5), 456–471 (2004).
[Crossref]

Haimberger, L.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Haji, G. A.

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

Hammann, E.

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

E. Hammann and A. Behrendt, “Parametrization of optimum filter passbands for rotational Raman temperature measurements,” Opt. Express 23(24), 30767–30782 (2015).
[Crossref] [PubMed]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

Hammel, H. B.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Hamrud, M.

S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
[Crossref]

Hardesty, R. M.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Hardy, K. R.

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

Hasebe, F.

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

Healy, S.

C. Cardinali and S. Healy, “Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics,” Q. J. R. Meteorol. Soc. 140(684), 2315–2320 (2014).
[Crossref]

Healy, S. B.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136(653), 1972–1990 (2010).
[Crossref]

S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
[Crossref]

Heesen, B.

Hefter, U.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Hersbach, H.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Hilber, B.

Hirakata, M.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Hodges, K. I.

L. Bengtsson, K. I. Hodges, and S. Hagemann, “Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(5), 456–471 (2004).
[Crossref]

Hogan, R. J.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

Hólm, E. V.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Hu, Y.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Huenerbein, A.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Hunt, W. H.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Hutchings, J. B.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Illingworth, A. J.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

Isaksen, L.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Jacob, D.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Jaenisch, V.

Jakobsen, P.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Kållberg, P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Kappe, P.

Keuler, K.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Kiemle, C.

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

Klein, V.

Klingenberg, H. H.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Kobayashi, S.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Köhler, M.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Kollias, P.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Koop, T.

D. M. Murphy and T. Koop, “Review of the vapour pressures of ice and supercooled water for atmospheric applications,” Quart. J. Royal Met. Soc. 131(608), 1539–1565 (2005).
[Crossref]

Kotlarski, S.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Kubota, T.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Kuestner, W.

Kursinski, E. R.

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

Kurt, R.

D. N. Whiteman, R. Kurt, and R. Scott, “Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar,” J. Atmos. Ocean. Technol. 27(11), 1781–1801 (2010).
[Crossref]

Landulfo, E.

Le Mounier, F.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

Lemmerz, C.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Lewis, J. R.

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

Lilly, S. J.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Linfield, R.

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

Liu, B.

Liu, Z.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

Lolli, S.

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

Long, K. S.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Lu, X.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Lü, Q.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Lucker, P.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Lucker, P. L.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Lunine, J. I.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Lüthi, D.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Macke, A.

A. Macke, “Scattering of Light by Irregular Ice Crystals in Three-dimensional Inhomogeneous Cirrus Clouds,” in Proceedings of the Eighth Conference on Atmospheric Radiation (American Meteorological Society, 1994), pp. 304–306.

Mahon, N.

Major, A.

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Mannucci, A. J.

P. Vergados, A. J. Mannucci, and C. O. Ao, “Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets,” J. Geophys. Res. Atmos. 119(12), 7718–7731 (2014).
[Crossref]

Marchese, R.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Mather, J. C.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Matricardi, M.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Mattis, I.

Mazzinghi, P.

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

Mc Caughrean, M. J.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

McNally, A. P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Melfi, S. H.

Menzel, R.

Mercogliano, P.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Metzendorf, S.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

Michaelis, W.

Mielke, B.

Milelli, M.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Minassian, A.

Monge-Sanz, B. M.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Morcrette, J.-J.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Mountain, M.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Müller, D.

Muppa, S. K.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

Murphy, D. M.

D. M. Murphy and T. Koop, “Review of the vapour pressures of ice and supercooled water for atmospheric applications,” Quart. J. Royal Met. Soc. 131(608), 1539–1565 (2005).
[Crossref]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Nakajima, T.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Nakajima, T. Y.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Nakamura, T.

Nella, J.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Newsom, R. K.

Nikulin, G.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Nishizawa, T.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

O’Connor, E. J.

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

Ohno, Y.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Okamoto, H.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Oki, R.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Oltmans, S. J.

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

Onishi, M.

Ostermeyer, M.

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Pal, S.

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

Park, B.-K.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Parlange, M.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Pelon, J.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Peubey, C.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Poli, P.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136(653), 1972–1990 (2010).
[Crossref]

Powell, K. A.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Proberaj, G.

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Reichardt, J.

Reitebuch, O.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Riebesell, M.

Riede, A.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

Rieke, G. H.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Rieke, M. J.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Ristori, P.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Rix, H.-W.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Rodier, S.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Rogers, R. R.

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

Sato, K.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Satoh, M.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Schär, C.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Schlüssel, P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Schofield, J. T.

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

Schwitalla, T.

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
[Crossref]

Scoccione, A.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

Scott, R.

D. N. Whiteman, R. Kurt, and R. Scott, “Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar,” J. Atmos. Ocean. Technol. 27(11), 1781–1801 (2010).
[Crossref]

Seifert, A.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Serikov, I. B.

Serio, C.

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
[Crossref]

Shephard, M. W.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Shiotani, M.

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

Simeonov, V.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Simmons, A. J.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Simonetti, F.

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

Sivaraman, C.

Smith, E. P.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Smith, K.

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[Crossref]

Sonneborn, G.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Späth, F.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

Starosta, K.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Stiavelli, M.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Stockman, H. S.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Summa, D.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

Tackett, J. L.

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

Tan, D. G. H.

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

Tavolato, C.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Teichmann, C.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Teppitaksak, A.

Thépaut, J.-N.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
[Crossref]

Thomas, G. M.

Trepte, C.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Tsuda, T.

Turner, D. D.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “The use of Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48(20), 3903–3914 (2009).
[Crossref] [PubMed]

Tzeremes, G.

K. Gazeas, G. Tzeremes, and E. Armandillo, “Optical study of the laser beam propagation on Nd:YAG crystal slab for space LIDAR missions,” Rev. Boliv. Fís. 20s, 36–38 (2011).

Uppala, S. M.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Van Baelen, J.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

van de Berg, L.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

van den Bergh, H.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

van Meijgaard, E.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

van Zadelhoff, G.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Vaughan, M.

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

Vaughan, M. A.

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Vautard, R.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

Velázquez-Blázquez, A.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Venable, D. D.

Vergados, P.

P. Vergados, A. J. Mannucci, and C. O. Ao, “Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets,” J. Geophys. Res. Atmos. 119(12), 7718–7731 (2014).
[Crossref]

Vitart, F.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

Vömel, H.

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[Crossref]

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

Wagner, G.

Wandinger, U.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
[Crossref] [PubMed]

I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt. 41(30), 6451–6462 (2002).
[Crossref] [PubMed]

U. Wandinger, “Multiple-scattering influence on extinction and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37(3), 417–427 (1998).
[Crossref] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

Wang, Z.

Warrach-Sagi, K.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
[Crossref]

Wechsler, P.

Wehr, T.

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Weimer, C.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Weitkamp, C.

Welch, W.

Welton, E. J.

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

Whiteman, D. N.

Windhorst, R. A.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Winker, D. M.

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Wright, G. S.

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Wu, D.

Wulfmeyer, V.

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
[Crossref]

G. Wagner, V. Wulfmeyer, and A. Behrendt, “Detailed performance modeling of a pulsed high-power single-frequency Ti:Sapphire laser,” Appl. Opt. 50(31), 5921–5937 (2011).
[Crossref] [PubMed]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption lidar: performance simulations,” Appl. Opt. 45(11), 2474–2494 (2006).
[Crossref] [PubMed]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005).
[Crossref] [PubMed]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
[Crossref]

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21(15), 1150–1152 (1996).
[Crossref] [PubMed]

Young, S. A.

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[Crossref]

Zuccaro Marchi, A.

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

Zus, F.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Appl. Opt. (16)

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31(16), 3068–3082 (1992).
[Crossref] [PubMed]

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31(16), 3068–3082 (1992).
[Crossref] [PubMed]

Y. Arshinov and S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38(21), 4635–4638 (1999).
[Crossref] [PubMed]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

U. Wandinger, “Multiple-scattering influence on extinction and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37(3), 417–427 (1998).
[Crossref] [PubMed]

I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, “Relative-humidity profiling in the troposphere with a Raman lidar,” Appl. Opt. 41(30), 6451–6462 (2002).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
[Crossref] [PubMed]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44(4), 582–590 (2005).
[Crossref] [PubMed]

P. Di Girolamo, A. Behrendt, and V. Wulfmeyer, “Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption lidar: performance simulations,” Appl. Opt. 45(11), 2474–2494 (2006).
[Crossref] [PubMed]

R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “The use of Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48(20), 3903–3914 (2009).
[Crossref] [PubMed]

D. D. Venable, D. N. Whiteman, M. N. Calhoun, A. O. Dirisu, R. M. Connell, and E. Landulfo, “Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system,” Appl. Opt. 50(23), 4622–4632 (2011).
[Crossref] [PubMed]

G. Wagner, V. Wulfmeyer, and A. Behrendt, “Detailed performance modeling of a pulsed high-power single-frequency Ti:Sapphire laser,” Appl. Opt. 50(31), 5921–5937 (2011).
[Crossref] [PubMed]

J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
[Crossref] [PubMed]

Atmos. Chem. Phys. (5)

P. Di Girolamo, M. Cacciani, D. Summa, A. Scoccione, B. De Rosa, A. Behrendt, and V. Wulfmeyer, “Characterization of Boundary Layer Turbulent Processes by the Raman Lidar BASIL in the frame of HD(CP)2) Observational Prototype Experiment,” Atmos. Chem. Phys. 17(1), 745–767 (2017).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HDCP2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer, First measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, “The global 3-D distribution of tropospheric aerosols as characterized by CALIOP,” Atmos. Chem. Phys. 13(6), 3345–3361 (2013).
[Crossref]

Atmos. Meas. Tech. (2)

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. van den Bergh, “Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar,” Atmos. Meas. Tech. 9(4), 1701–1720 (2016).
[Crossref]

Bull. Am. Meteorol. Soc. (3)

É. Gérard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES),” Bull. Am. Meteorol. Soc. 85(2), 237–252 (2004).
[Crossref]

W. P. Elliott and D. J. Gaffen, “Effects of conversion algorithms on reported upper air dewpoint depressions,” Bull. Am. Meteorol. Soc. 74(7), 1323–1325 (1993).
[Crossref]

A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoë, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velázquez-Blázquez, U. Wandinger, T. Wehr, and G. van Zadelhoff, “The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation,” Bull. Am. Meteorol. Soc. 96(8), 1311–1332 (2015).
[Crossref]

Clim. Dyn. (1)

K. Warrach-Sagi, T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, “Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany,” Clim. Dyn. 41(3-4), 755–774 (2013).
[Crossref]

Geophys. Res. Lett. (1)

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Geosci. Model Dev. (1)

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer, “Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble,” Geosci. Model Dev. 7(4), 1297–1333 (2014).
[Crossref]

J. Appl. Meteorol. Climatol. (1)

J. R. Campbell, S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, “Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences,” J. Appl. Meteorol. Climatol. 55(8), 1667–1679 (2016).
[Crossref]

J. Atmos. Ocean. Technol. (7)

E. J. O’Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21(5), 777–786 (2004).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

H. Vömel, M. Fujiwara, M. Shiotani, F. Hasebe, S. J. Oltmans, and J. E. Barnes, “The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions,” J. Atmos. Ocean. Technol. 20(11), 1560–1567 (2003).
[Crossref]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

S. A. Young and M. A. Vaughan, “The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description,” J. Atmos. Ocean. Technol. 26(6), 1105–1119 (2009).
[Crossref]

D. N. Whiteman, R. Kurt, and R. Scott, “Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar,” J. Atmos. Ocean. Technol. 27(11), 1781–1801 (2010).
[Crossref]

J. Geophys. Res. (2)

E. R. Kursinski, G. A. Haji, K. R. Hardy, J. T. Schofield, and R. Linfield, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102(D19), 23429–23465 (1997).
[Crossref]

H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007).
[Crossref]

J. Geophys. Res. Atmos. (1)

P. Vergados, A. J. Mannucci, and C. O. Ao, “Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets,” J. Geophys. Res. Atmos. 119(12), 7718–7731 (2014).
[Crossref]

Laser Phys. (1)

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Laser Phys. Lett. (1)

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

Laser. Opto. (1)

G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, “High peak and average power all solid-state laser systems for airborne LIDAR applications,” Laser. Opto. 32, 29–37 (2000).

Meteorol. Z. (1)

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache, F. Grazzini, P. Mercogliano, M. Milelli, and K. Starosta, “Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model,” Meteorol. Z. 18(6), 631–645 (2009).
[Crossref]

Mon. Weather Rev. (1)

N. A. Crook, “Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields,” Mon. Weather Rev. 124(8), 1767–1785 (1996).
[Crossref]

Opt. Eng. (1)

F. Simonetti, A. Zuccaro Marchi, L. Gambicorti, V. Bratina, and P. Mazzinghi, “Large aperture telescope for advanced lidar system,” Opt. Eng. 49(7), 073001 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Q. J. R. Meteorol. Soc. (6)

S. Adam, A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, “First assimilation of temperature lidar data into a numerical weather prediction model: Impact on the simulation of the temperature field, inversion strength, and planetary boundary layer depth,” Q. J. R. Meteorol. Soc. 142, 2882–2896 (2016).
[Crossref]

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).
[Crossref]

S. B. Healy, J. R. Eyre, M. Hamrud, and J.-N. Thépaut, “Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators,” Q. J. R. Meteorol. Soc. 133(626), 1213–1227 (2007).
[Crossref]

C. Cardinali and S. Healy, “Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics,” Q. J. R. Meteorol. Soc. 140(684), 2315–2320 (2014).
[Crossref]

P. Poli, S. B. Healy, and D. P. Dee, “Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis,” Q. J. R. Meteorol. Soc. 136(653), 1972–1990 (2010).
[Crossref]

D. J. Carson, “The development of a dry inversion-capped convectively unstable boundary layer,” Q. J. R. Meteorol. Soc. 99(421), 450–467 (1973).
[Crossref]

Quart. J. Royal Met. Soc. (1)

D. M. Murphy and T. Koop, “Review of the vapour pressures of ice and supercooled water for atmospheric applications,” Quart. J. Royal Met. Soc. 131(608), 1539–1565 (2005).
[Crossref]

Remote Sens. Environ. (3)

X. Lu, Y. Hu, Z. Liu, S. Rodier, M. Vaughan, P. Lucker, C. Trepte, and J. Pelon, “Observations of Arctic snow and sea ice cover from CALIOP lidar measurements,” Remote Sens. Environ. 194, 248–263 (2017).
[Crossref]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112(4), 1552–1568 (2008).
[Crossref]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, “Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar,” Remote Sens. Environ. 95(2), 211–230 (2005).
[Crossref]

Rev. Boliv. Fís. (1)

K. Gazeas, G. Tzeremes, and E. Armandillo, “Optical study of the laser beam propagation on Nd:YAG crystal slab for space LIDAR missions,” Rev. Boliv. Fís. 20s, 36–38 (2011).

Rev. Geophys. (1)

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlüssel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Space Sci. Rev. (1)

J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, J. I. Lunine, M. J. Mc Caughrean, M. Mountain, J. Nella, G. H. Rieke, M. J. Rieke, H.-W. Rix, E. P. Smith, G. Sonneborn, M. Stiavelli, H. S. Stockman, R. A. Windhorst, and G. S. Wright, “The James Webb Space Telescope,” Space Sci. Rev. 123(4), 485–606 (2006).
[Crossref]

Tellus, Ser. A, Dyn. Meterol. Oceanogr. (1)

L. Bengtsson, K. I. Hodges, and S. Hagemann, “Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(5), 456–471 (2004).
[Crossref]

Other (27)

Intergovernmental Panel on Climate Change, “Climate Change 2013: The physical science basis,” in 5th Assessment Report, IPCC WGI AR5, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Cambridge University, 2013) Cambridge, U. K.

Intergovernmental Panel on Climate Change, “Climate Change 2014: Impacts, adaptation, and vulnerability,” in 5th Assessment Report, IPCC WGII AR5, Technical Summary, Coordinating Lead Authors: C. Field, V. Barros, K. Mach, and M. Mastrandrea, available at http://www.ipcc.ch/report/ar5/wg2 (IPCC, 2014), Geneva, Switzerland.

Intergovernmental Panel on Climate Change, “Climate Change 2014: Synthesis Report” in 5th Assessment Report, Working Groups I, II and III, Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.) (IPCC, 2014) Geneva, Switzerland, 151 pp.

ESA, “ARMA Reference Model of the Atmosphere,” in Technical Report APP-FP/99–11239/AC/ac (European Space Agency, 1999).

World Meteorological Organisation (WMO), Expert Team, Commission on Basic Systems, Working Group on Satellites, Third session, Final Report, No. 1 (World Meteorological Organization, 1998), p. 73.

CEOS, WMO On-line Database, Version 2.5, Observational requirements, http://altostratus.wmo.ch/sat/stations/_asp_htx_idc/Requirements.asp (World Meteorological Organization, 2003).

GCOS 2016 Implementation Plan, WMO GCOS-200 (GOOS-214), https://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/programme/brochure/GCOS-200_OnlineVersion.pdf?PlowENiCc1RGh9ReoeAoGBT0QhnJYm6_ (World Meteorological Organization, 2016)

R. J. List, ed., Smithsonian Meteorological Tables, 6th ed. (Smithsonian Institution, 1951), p. 527.

World Meteorological Organization, Guide to Meteorological Instruments and Methods of Observation, Appendix 4B, WMO-No. 8, CIMO Guide, (World Meteorological Organization, 2008) Geneva.

A. Macke, “Scattering of Light by Irregular Ice Crystals in Three-dimensional Inhomogeneous Cirrus Clouds,” in Proceedings of the Eighth Conference on Atmospheric Radiation (American Meteorological Society, 1994), pp. 304–306.

J. Kar, M. A. Vaughan, K.-P. Lee, J. L. Tackett, M. A. Avery, A. Garnier, B. J. Getzewich, W. H. Hunt, D. Josset, Z. Liu, P. L. Lucker, B. Magill, A. H. Omar, J. Pelon, R. R. Rogers, T. D. Toth, C. R. Trepte, J.-P. Vernier, D. M. Winker, and S. A. Young, “CALIPSO Lidar Calibration at 532 nm: Version 4 Nighttime Algorithm”, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-365 (2017).

C. F. Lillie, “Large Deployable Telescopes for Future Space Observatories,” Proc. SPIE 5899, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, 58990D (International Society for Optical Engineering, 2005).
[Crossref]

GCOS (Global Climate Observing System) Reference Upper-Air Network, (GRUAN), http://www.wmo.int/pages/prog/gcos/index.php?name=GRUAN .

C. Seckar, L. Guy, A. Di Fronzo, and C. Weimer, “Performance Testing of an Active Boresight Mechanism for Use in the CALIPSO Spaceborne Lidar Mission”. Optomechanics, A. E. Hatheway, Ed., Proc. SPIE 5877, 319–330 (International Society for Optical Engineering, 2005).

A. Zuccaro Marchi, F. D’Amato, D. Gallieni, R. Biasi, M. Molina, F. Duò, N. Ruder, P. Salinari, F. Lisi, A. Riccardi, L. Gambicori, F. Simonetti, and J. P. N. Pereira do Carmo, “Technological Developments for Ultra-lightweight, Large aperture, Deployable mirror for space telescopes”, presented at the International Conference on Space Optics 2010, Rhodes, Greece, 4 - 8 October 2010.

H. Hemmati, Y. Chen, and I. Crossfield, “Telescope Wavefront Aberration Compensation with a Deformable Mirror in an Adaptive Optics System,” Free-Space Laser Communication Technologies XVIII, edited by G. Stephen Mecherle, Proc. SPIE 6105, 61050O, 0277–786X/06/$15 (International Society for Optical Engineering, 2006).

J. V. Sandusky, D. J. Hoppe, and M. J. Britcliffe, “Deep Space Optical reception Antenna (DSORA),” in JPL’s IND Progress Report (NASA, 2000) 42–143, 1–11.

P. Mazzinghi, V. Bratina, D. Ferruzzi, L. Gambicorti, F. Simonetti, A. Zuccaro Marchi, P. Salinari, F. Lisi, M. Olivier, A. Bursi, and J. Pereira, “An Ultra-lightweight, Large Aperture, Deployable telescope for Advanced Lidar Applications”, in Proceedings of the 6th Internatational Conference on Space Optics, ESA SP-621 (European Space Agency, 2006).

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Frequency stabilized, diode pumped Nd:YAG laser with up to 0.5 J pulse energy and average output powers of 100W,” in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 57–60.

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Vol. 102 of Springer Series in Optical Sciences, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.

European Space Agency, ADM-Aeolus Science Report - SP-1311, ISBN 978–92–9221–404–3, ISSN 0379–6566 (European Space Agency, 2008).

V. Simeonov, “First-Principles Calibrated Water Vapor Raman Lidar for Atmospheric Humidity Profiling,” presented at the Eighth Symposium on Lidar Atmospheric Applications, 97th AMS Annual Meeting, 22–26 January 2017, Seattle, WA, USA.

I. Bekey, “An extremely large yet ultra-light weight space telescope and array,” (NASA Institute for Advanced Concepts), http://www.niac.usra.edu/studies/ (1999).

N. J. Woolf, “Very large optics for the study of extrasolar terrestrial planets,” (NASA Institute for Advanced Concepts), http://www.niac.usra.edu/studies/ (1999).

A. L. Palisoc, “Large telescope using a holographically corrected membrane mirror,” (NASA Institute for Advanced Concepts), http://www.niac.usra.edu/studies/ (2000).

D. N. Whiteman, J. R. Potter, R. Tola, I. Veselovskii, M. Cadirola, K. Rush and J. Comer, “Improvements in Raman Lidar Measurements Using New Interference Filter Technology,” in NASA Technical Report, Paper No. ICNMM2006–96123, Paper Id: 20060026169, NASA Technical Reports Server - NTRS (NASA, 2006).

M. Scobey, P. Egerton, R. Fortenberry, and A. Czajkowski, “Ultra-narrowband Optical Bandpass Filters with Large Format and Improved Temperature Stability,” in Alluxa White Paper Series. http://www.alluxa.com/learning-center (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Variability of the zenith angle, SZA, as a function of latitude for different days of the year. Days are expressed with the Julian calendar.
Fig. 2
Fig. 2 Vertical profiles of Δ x H 2 O ( z ) / x H 2 O ( z ) for the US Standard Atmosphere 1976 (panel a), the Tropical (panel b) and Mid-Latitude Summer/Winter atmospheric reference models (panel c and d, respectively). Daytime performance is simulated considering a minimum SZA value of 65°, 82° and 68° for the US Standard Atmosphere 1976, the Tropical and the Mid-Latitude model, respectively. Thin lines represent a horizontal resolution of 20 km, while bold lines represent a horizontal resolution of 50 km. In panel a) simulations performed with aerosol data from [50] are also included (Eastern US, 31–41 °N, 95–75 °W, during July 2006–2011, and over South-Eastern Asia, 1–19 °N, 90–110 °E, during August 2006–2011, Arctic, 61–82 °N, January 2007–2011and March 2007–2011), all with a horizontal resolution of 50 km.
Fig. 3
Fig. 3 Vertical profiles of ΔT for the US Standard Atmosphere 1976 (panel a), the Tropical (panel b) and Mid-Latitude Summer/Winter atmospheric reference models (panel c and d, respectively). Daytime performance is simulated considering a minimum SZA value of 65°, 82° and 68° for the US Standard Atmosphere 1976, the Tropical and the Mid-Latitude model, respectively. Thin lines represent a horizontal resolution of 20 km, while bold lines represent a horizontal resolution of 50 km. In panel a) simulations performed with aerosol data from [50] are also included (Eastern US, 31–41 °N, 95–75 °W, during July 2006–2011, and over South-Eastern Asia, 1–19 °N, 90–110 °E, during August 2006–2011), Arctic, 61–82 °N, January 2007–2011and March 2007–2011), all with a horizontal resolution of 50 km.
Fig. 4
Fig. 4 Vertical profiles of ΔRH(z)/RH(z) for the US Standard Atmosphere 1976 (panel a), the Tropical (panel b) and Mid-Latitude Summer/Winter atmospheric reference models (panel c and d, respectively). Daytime performance is simulated considering a minimum SZA value of 65°, 82° and 68° for the US Standard Atmosphere 1976, the Tropical and the Mid-Latitude model, respectively. Thin lines represent a horizontal resolution of 20 km, while bold lines represent a horizontal resolution of 50 km.
Fig. 5
Fig. 5 Vertical profiles of Δ β λ 0 p a r ( z ) / β λ 0 p a r ( z ) for the for the US Standard Atmosphere 1976, the Tropical and Mid-Latitude Summer/Winter atmospheric reference models. The ESA-ARMA aerosol backscatter model is also introduced in the figure.
Fig. 6
Fig. 6 Vertical profiles of Δ α λ 0 p a r ( z ) / α λ 0 p a r ( z ) for the for the US Standard Atmosphere 1976, the Tropical and Mid-Latitude Summer/Winter atmospheric reference models.
Fig. 7
Fig. 7 Vertical profile of the model particle backscattering coefficient profile at 354.7 nm considered in the simulations; the profile includes both an aerosol contribution (from the ESA median model) and the two Gaussian-shape cloud layers.
Fig. 8
Fig. 8 Vertical profiles of Δ x H 2 O ( z ) / x H 2 O ( z ) in cloudy conditions for the US Standard Atmosphere 1976 (panel a), the Tropical (panel b) and Mid-Latitude Summer/Winter atmospheric reference models (panel c and d, respectively). In the figure, two scenarios are considered: the presence of the cirrus cloud only and the presence of both the cirrus and the mid-level cloud. Simulations in this figure consider a horizontal resolution of 50 km.
Fig. 9
Fig. 9 Vertical profiles of ΔT in cloudy conditions for the US Standard Atmosphere 1976(panel a), the Tropical (panel b) and Mid-Latitude Summer/Winter atmospheric reference models (panel c and d, respectively). In the figure, two scenarios are considered: the presence of the cirrus cloud only and the presence of both the cirrus and the mid-level cloud. Simulations in this figure consider a horizontal resolution of 50 km.

Tables (2)

Tables Icon

Table 1 Specifications of the interference filters considered in the simulations.

Tables Icon

Table 2 Measured atmospheric variables and their specifications. Precisions are altitude and latitude dependent. MLS, and T stand for mid-latitude summer and tropical climatologies, respectively. The upper troposphere-lower stratosphere (UTLS) is intended to extend up to 18-20 km.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

x H 2 O ( z ) = K ( z ) P H 2 O ( z ) P N 2 ( z )
Q ( z ) = P H i J ( z ) / P L o J ( z ) = exp [ α / T ( z ) + β ]
T ( z ) = α ln [ Q ( z ) ] β
P H 2 O ( z ) = λ 0 E 0 h c A t e l z 2 η c τ 2 n H 2 O ( z ) σ H 2 O T λ 0 ( z ) T λ H 2 O ( z ) + b k H 2 O
P r e f ( z ) = P L o J ( z ) + c P H i J ( z )
P L o J / H i J ( z ) = λ 0 E 0 h c A t e l z 2 η c τ 2 i = N 2 , O 2 J i = 1 n [ n i ( z ) τ R R ( J i ) F J i ( T ) d σ J i d Ω ] × × T λ 0 ( z ) T λ L o J / H i J ( z ) + b k L o J / H i J
β λ 0 p a r ( z ) = β λ 0 m o l [ P λ 0 ( z ) k P r e f ( z ) 1 ]
P λ 0 ( z ) = λ 0 E 0 h c A t e l z 2 η c τ 2 [ β λ 0 m o l ( z ) + β λ 0 p a r ( z ) ] T λ 0 2 ( z ) + b k λ 0
α λ 0 p a r ( z ) = 1 2 d d z ln { n ( z ) P r e f ( z ) z 2 } α λ 0 m o l ( z )
Δ x H 2 O ( z ) x H 2 O ( z ) = 100 × P H 2 O ( z ) + b k H 2 O P H 2 O 2 ( z ) + P r e f ( z ) + b k r e f P r e f 2 ( z )
Δ T ( z ) = T ( z ) R R ( z ) P l o J ( z ) + b k l o J P l o J 2 ( z ) + P h i J ( z ) + b k h i J P h i J 2 ( z )
Δ R H ( z ) R H ( z ) = ( Δ x H 2 O ( z ) x H 2 O ( z ) ) 2 + ε ( Δ e s ( z ) e s ( z ) ) 2
e s ( z ) = c exp { a [ T ( z ) 273.15 K ] T ( z ) 273.15 K + b }
Δ R H ( z ) R H ( z ) = ( Δ x H 2 O ( z ) x H 2 O ( z ) ) 2 + ε 2 { 1 a b T ( z ) [ T ( z ) 273.15 + b ] 2 } 2 ( Δ T ( z ) T ( z ) ) 2
Δ β λ 0 p a r ( z ) β λ 0 p a r ( z ) = 100 × ( Δ β λ 0 m o l β λ 0 m o l ) 2 + ( P λ 0 ( z ) / k P r e f ( z ) P λ 0 ( z ) / k P r e f ( z ) 1 ) 2 [ P λ 0 ( z ) + b k λ 0 P λ 0 2 ( z ) + P r e f ( z ) + b k r e f P r e f 2 ( z ) ]
Δ α λ 0 p a r ( z ) = 1 2 Δ z Δ P r e f ( z ) P r e f ( z )
Δ α λ 0 p a r α λ 0 p a r ( z ) = 100 2 Δ τ Δ P r e f ( z ) P r e f ( z )
P 0 A t e l η Δ x Δ z

Metrics