Abstract

We report on a computational study exploring the design of mesoscale metallic front contacts for solar cells. We investigated silver contact structures with circle, triangle and square cross-sections for various length scales and surface coverages. We found that for ‘nanoscale’ contacts with widths between 10 nm and 1000 nm, resonant coupling actually impairs light absorption in the semiconductor. Conversely, for ‘mesoscale’ contact widths > 1000 nm, the light interaction is determined by the geometric shadowing. We find that mesoscale silver contacts with triangular cross-section outperform other nanostructure morphologies in reducing shadow losses and yield contact transparency of >99% percent with sheet resistance <0.2 Ω/sq. Surprisingly, very densely spaced mesoscale silver triangular cross-section contacts can enhance the absorption of thin silicon/silver structures by up to 15% at a front contact coverage of 83%, due to light trapping by the front contact. Such structures can also maintain up to 100% absorption within the silicon, at a front contact coverage of 50%, relative to the same structure without metal.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement

Hamid Heidarzadeh, Ali Rostami, Samiye Matloub, Mahboubeh Dolatyari, and Ghassem Rostami
Appl. Opt. 54(12) 3591-3601 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Blakers, “Shading losses of solar‐cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
    [Crossref]
  2. M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).
  3. J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
    [Crossref]
  4. J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
    [Crossref]
  5. M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2(10), 850–853 (2015).
    [Crossref]
  6. P. G. Kik, “Catoptric electrodes: transparent metal electrodes using shaped surfaces,” Opt. Lett. 39(17), 5114–5117 (2014).
    [Crossref] [PubMed]
  7. R. Saive, C. R. Bukowsky, S. Yalamanchili, M. Boccard, T. Saenz, A. M. Borsuk, Z. Holman, and H. A. Atwater, “Effectively transparent contacts (ETCs) for solar cells,” in IEEE 43rdPhotovoltaic Specialists Conference (PVSC) (2016), pp. 3612–3615.
  8. R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
    [Crossref]
  9. R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
    [Crossref]
  10. H. A. Atwater, R. Saive, A. M. Borsuk, H. Emmer, C. Bukowsky, and S. Yalamanchili, “Solar Cells and Methods of Manufacturing Solar Cells Incorporating Effectively Transparent 3D Contacts,” (US Patent, 2016).
  11. Z. Zhao, K. X. Wang, and S. Fan, “Analysis of an anti-reflecting nanowire transparent electrode for solar cells,” J. Appl. Phys. 121(11), 113109 (2017).
    [Crossref]
  12. T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013).
    [Crossref] [PubMed]
  13. S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
    [Crossref]
  14. V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
    [Crossref] [PubMed]
  15. J. V. Deelen, A. Omar, and M. Barink, “Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts,” Materials (Basel) 10(12), 392 (2017).
    [Crossref] [PubMed]
  16. R. Saive, C. R. Bukowsky, and H. Atwater, “Three-dimensional nanoimprint lithography using two-photon lithography master samples,” https://arXiv:1702.04012v1 (2017).
  17. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  18. J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  19. P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
    [Crossref] [PubMed]
  20. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
    [Crossref]
  21. W. M. Haynes, CRC handbook of chemistry and physics (CRC press, 2014).
  22. G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
    [Crossref]
  23. S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.
  24. S. Braun, G. Micard, and G. Hahn, “Solar cell improvement by using a multi busbar design as front electrode,” Energy Procedia 27, 227–233 (2012).

2017 (4)

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Z. Zhao, K. X. Wang, and S. Fan, “Analysis of an anti-reflecting nanowire transparent electrode for solar cells,” J. Appl. Phys. 121(11), 113109 (2017).
[Crossref]

J. V. Deelen, A. Omar, and M. Barink, “Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts,” Materials (Basel) 10(12), 392 (2017).
[Crossref] [PubMed]

2016 (2)

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

2015 (3)

M. F. Schumann, S. Wiesendanger, J. C. Goldschmidt, B. Bläsi, K. Bittkau, U. W. Paetzold, A. Sprafke, R. B. Wehrspohn, C. Rockstuhl, and M. Wegener, “Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes,” Optica 2(10), 850–853 (2015).
[Crossref]

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
[Crossref] [PubMed]

2014 (3)

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

P. G. Kik, “Catoptric electrodes: transparent metal electrodes using shaped surfaces,” Opt. Lett. 39(17), 5114–5117 (2014).
[Crossref] [PubMed]

2013 (2)

T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013).
[Crossref] [PubMed]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

2012 (2)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

S. Braun, G. Micard, and G. Hahn, “Solar cell improvement by using a multi busbar design as front electrode,” Energy Procedia 27, 227–233 (2012).

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

1992 (1)

A. Blakers, “Shading losses of solar‐cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
[Crossref]

1982 (1)

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[Crossref]

Ager, J. W.

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

Atwater, H. A.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Ballif, C.

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

Barink, M.

J. V. Deelen, A. Omar, and M. Barink, “Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts,” Materials (Basel) 10(12), 392 (2017).
[Crossref] [PubMed]

Basu, D.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Bittkau, K.

Blakers, A.

A. Blakers, “Shading losses of solar‐cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
[Crossref]

Bläsi, B.

Boccard, M.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Borsato, O.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Borsuk, A. M.

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Bortoletto, E.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Braun, S.

S. Braun, G. Micard, and G. Hahn, “Solar cell improvement by using a multi busbar design as front electrode,” Energy Procedia 27, 227–233 (2012).

Bukowsky, C. R.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Carvalho, R.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Cui, Y.

V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
[Crossref] [PubMed]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

De Wolf, S.

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

Deelen, J. V.

J. V. Deelen, A. Omar, and M. Barink, “Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts,” Materials (Basel) 10(12), 392 (2017).
[Crossref] [PubMed]

Duda, A.

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Emmer, H. S.

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Fan, S.

Z. Zhao, K. X. Wang, and S. Fan, “Analysis of an anti-reflecting nanowire transparent electrode for solar cells,” J. Appl. Phys. 121(11), 113109 (2017).
[Crossref]

Friedman, D. J.

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Fujita, K.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Galiazzo, M.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Gao, T.

Geisz, J.

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Goldschmidt, J. C.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Gu, M.

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

Hahn, G.

S. Braun, G. Micard, and G. Hahn, “Solar cell improvement by using a multi busbar design as front electrode,” Energy Procedia 27, 227–233 (2012).

Harrison, H.

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[Crossref]

Haume, K.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Hegde, G.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Holman, Z.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Hsu, P.-C.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Hymel, T. M.

V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
[Crossref] [PubMed]

Jahelka, P.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Jia, B.

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

Jiang, Z.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Kharche, N.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Kik, P. G.

Koduvelikulathu, L. J.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Kong, D.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Kubis, T.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Lai, R. A.

V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
[Crossref] [PubMed]

Leu, P. W.

Lloyd, J. V.

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Lossen, J.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Maruyama, E.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Matsuyama, K.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

McMahon, W.

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Micard, G.

S. Braun, G. Micard, and G. Hahn, “Solar cell improvement by using a multi busbar design as front electrode,” Energy Procedia 27, 227–233 (2012).

Morales-Masis, M.

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

Nakamura, Y.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Narasimhan, V. K.

V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
[Crossref] [PubMed]

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Nayak, S.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Nishiwaki, T.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Omar, A.

J. V. Deelen, A. Omar, and M. Barink, “Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts,” Materials (Basel) 10(12), 392 (2017).
[Crossref] [PubMed]

Ouyang, Z.

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

Paetzold, U. W.

Park, S.-H.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Povolotskyi, M.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Reeves, G.

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[Crossref]

Rockstuhl, C.

Rossetto, M. P.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Rudolph, D.

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

Ryoung Lee, H.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Saenz, T.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Saive, R.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Schumann, M. F.

Shi, J.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Sprafke, A.

Stokes, N.

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

Taguchi, M.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Tohoda, S.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Wang, K. X.

Z. Zhao, K. X. Wang, and S. Fan, “Analysis of an anti-reflecting nanowire transparent electrode for solar cells,” J. Appl. Phys. 121(11), 113109 (2017).
[Crossref]

Wang, S.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Ward, J. S.

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Weber, C.

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Wegener, M.

Wehrspohn, R. B.

Wiesendanger, S.

Woods-Robinson, R.

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

Wu, H.

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Xie, S.

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

Yalamanchili, S.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Yano, A.

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

Young, M.

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Yu, Z. J.

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Zhao, Z.

Z. Zhao, K. X. Wang, and S. Fan, “Analysis of an anti-reflecting nanowire transparent electrode for solar cells,” J. Appl. Phys. 121(11), 113109 (2017).
[Crossref]

ACS Nano (1)

V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui, “Hybrid Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at Optoelectronic Interfaces,” ACS Nano 9(11), 10590–10597 (2015).
[Crossref] [PubMed]

Adv. Electron. Mater. (1)

M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, and C. Ballif, “Transparent Electrodes for Efficient Optoelectronics,” Adv. Electron. Mater. 3(5), 1600529 (2017).

Adv. Opt. Mater (1)

R. Saive, A. M. Borsuk, H. S. Emmer, C. R. Bukowsky, J. V. Lloyd, S. Yalamanchili, and H. A. Atwater, “Effectively Transparent Front Contacts for Optoelectronic Devices,” Adv. Opt. Mater 4(10), 1470–1474 (2016).
[Crossref]

Energy Procedia (2)

J. Lossen, D. Rudolph, L. J. Koduvelikulathu, R. Carvalho, M. P. Rossetto, O. Borsato, E. Bortoletto, and M. Galiazzo, “Double Printing nPERT Cells with Narrow Contact Layers,” Energy Procedia 92, 939–948 (2016).
[Crossref]

S. Braun, G. Micard, and G. Hahn, “Solar cell improvement by using a multi busbar design as front electrode,” Energy Procedia 27, 227–233 (2012).

IEEE Electron Device Lett. (1)

G. Reeves and H. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett. 3(5), 111–113 (1982).
[Crossref]

IEEE J. Photovolt. (1)

M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt. 4(1), 96–99 (2014).
[Crossref]

J. Appl. Phys. (3)

A. Blakers, “Shading losses of solar‐cell metal grids,” J. Appl. Phys. 71(10), 5237–5241 (1992).
[Crossref]

Z. Zhao, K. X. Wang, and S. Fan, “Analysis of an anti-reflecting nanowire transparent electrode for solar cells,” J. Appl. Phys. 121(11), 113109 (2017).
[Crossref]

S. Xie, Z. Ouyang, N. Stokes, B. Jia, and M. Gu, “Enhancing the optical transmittance by using circular silver nanowire networks,” J. Appl. Phys. 115(19), 193102 (2014).
[Crossref]

Materials (Basel) (1)

J. V. Deelen, A. Omar, and M. Barink, “Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts,” Materials (Basel) 10(12), 392 (2017).
[Crossref] [PubMed]

Nano Lett. (1)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. Ryoung Lee, and Y. Cui, “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires,” Nat. Commun. 4, 2522 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Prog. Photovolt. Res. Appl. (1)

J. S. Ward, A. Duda, D. J. Friedman, J. Geisz, W. McMahon, and M. Young, “High aspect ratio electrodeposited Ni/Au contacts for GaAs‐based III–V concentrator solar cells,” Prog. Photovolt. Res. Appl. 23(5), 646–653 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Sustain. Energy Fuels (1)

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman, and H. A. Atwater, “Silicon heterojunction solar cells with effectively transparent front contacts,” Sustain. Energy Fuels 1(3), 593–598 (2017).
[Crossref]

Other (5)

H. A. Atwater, R. Saive, A. M. Borsuk, H. Emmer, C. Bukowsky, and S. Yalamanchili, “Solar Cells and Methods of Manufacturing Solar Cells Incorporating Effectively Transparent 3D Contacts,” (US Patent, 2016).

R. Saive, C. R. Bukowsky, S. Yalamanchili, M. Boccard, T. Saenz, A. M. Borsuk, Z. Holman, and H. A. Atwater, “Effectively transparent contacts (ETCs) for solar cells,” in IEEE 43rdPhotovoltaic Specialists Conference (PVSC) (2016), pp. 3612–3615.

R. Saive, C. R. Bukowsky, and H. Atwater, “Three-dimensional nanoimprint lithography using two-photon lithography master samples,” https://arXiv:1702.04012v1 (2017).

W. M. Haynes, CRC handbook of chemistry and physics (CRC press, 2014).

S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume, T. Kubis, and M. Povolotskyi, “Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts,” in 71st Annual IEEE Device Research Conference (2013), pp. 125–126.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the interaction of light with wave vector and metal structures of width w in the a) nanoscale (w<<λ), b) mesoscale (w ≥ λ) and c) macroscale (w>>λ).
Fig. 2
Fig. 2 Wavelength dependent transmission of free-standing a) triangle, b) circle and c) square cross-section silver structures with different width and 10% coverage. d) Transmission into silicon with triangle silver structures of different with and 10% coverage. e) Reflection and f) absorption within the silver of free-standing triangles.
Fig. 3
Fig. 3 Effective transparency weighted with the AM 1.5G solar spectrum depending on the width w and coverage of metallic structures on crystalline silicon with a) circle, b) triangle and c) square cross-section. Sheet resistance of silver lines with different width w, coverage and d) circle, e) triangle and f) square cross-section.
Fig. 4
Fig. 4 Wavelength dependent a) Total absorption, b) Absorption within silicon and front metal absorption of 2 µm silicon with antireflection coating, rear reflector.and mesoscale triangular cross-section metallic grids on front. The inset in Fig. 4(a) shows a schematic of a 2 µm silicon absorber with mesoscale triangle contacts that enable effective transparence (grey arrow) and light trapping (red arrow).
Fig. 5
Fig. 5 Coverage dependent total absorption (black line with squares) and absorption within silicon (black line) with a) 2 µm, b) 5 µm and c) 10 µm thickness. The area fraction that is not covered by metal and the transmission into the silicon are shown by a black line with circles and triangles, respectively. The transmission was determined in a simulation with infinitely thick silicon in order to avoid superposition with escaped light. The area with increased absorption that is due to effective transparency is shown in light grey, light trapping is presented in red and parasitic absorption in front and rear metal are shown in dark grey. The total absorption and the absorption within silicon were calculated relative to a device with the same layer stack but without metal contacts (0% coverage).

Metrics