Abstract

Two (La0.7Sr0.3MnO3)n/(SrTiO3)m superlattices with different superlattice period but the same total thickness were deposited on LaAlO3 substrates by pulsed laser deposition. Dielectric properties of these samples were investigated by means of terahertz time-domain spectroscopy (THz-TDS) under external continuous wave green laser excitation and optical-pump terahertz-probe spectroscopy (OPTP) at room temperature. Experimental results show that the real part of the permittivity for both superlattices increases significantly with increasing green laser pump power, which indicates the decrease of the plasma frequency, along with the increase of the electron scattering rate, soft mode eigenfrequency and oscillator strength in the Drude-Lorentz model. Furthermore, it’s observed that the insulating superlattice exhibits a more significant dielectric tunability than the metallic superlattice. Besides, the carrier lifetime of superlattices is much shorter than the La0.7Sr0.3MnO3 thin film in the OPTP measurements, indicating that the electrons excited in the La0.7Sr0.3MnO3 layers may be trapped by the defects located in the interfaces of La0.7Sr0.3MnO3 and SrTiO3 or the SrTiO3 layers. With the optical field-induced tunability of dielectric properties, (La0.7Sr0.3MnO3)n/(SrTiO3)m superlattices show great potential in the actively tunable devices in the THz range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range

Liang Wu, Linkun Jiang, Quan Sheng, Xin Ding, and Jianquan Yao
Opt. Lett. 38(14) 2581-2583 (2013)

Effect of optical pumping on the dielectric properties of 0.6CaTiO3-0.4NdAlO3 ceramics in the terahertz range

Dan Li, Chunya Luo, Yebin Xu, Jing Zhang, Liang Wu, Huaixing Wang, Songjie Shi, Furi Ling, and Jianquan Yao
Appl. Opt. 57(1) 1-4 (2018)

Effect of charge ordering and disordering on terahertz radiation characteristics of magnetoresistive Pr0.7Ca0.3MnO3 thin films

Noriaki Kida, Kouhei Takahashi, and Masayoshi Tonouchi
Opt. Lett. 29(21) 2554-2556 (2004)

References

  • View by:
  • |
  • |
  • |

  1. W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
    [Crossref]
  2. A. Tomasino, A. Mazhorova, M. Clerici, M. Peccianti, S.-P. Ho, Y. Jestin, A. Pasquazi, A. Markov, X. Jin, R. Piccoli, S. Delprat, M. Chaker, A. Busacca, J. Ali, L. Razzari, and R. Morandotti, “Solid-state-biased coherent detection of ultra-broadband terahertz pulses,” Optica 4(11), 1358–1362 (2017).
    [Crossref]
  3. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
    [Crossref] [PubMed]
  4. X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
    [Crossref] [PubMed]
  5. L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
    [Crossref] [PubMed]
  6. M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
    [Crossref]
  7. J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
    [Crossref] [PubMed]
  8. J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
    [Crossref] [PubMed]
  9. L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
    [Crossref] [PubMed]
  10. L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
    [Crossref]
  11. A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
    [Crossref] [PubMed]
  12. I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
    [Crossref] [PubMed]
  13. P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
    [Crossref]
  14. V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
    [Crossref]
  15. M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
    [Crossref]
  16. Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
    [Crossref] [PubMed]
  17. H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
    [Crossref]
  18. R. D. Averitt and A. J. Taylor, “Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials,” J. Phys. Condens. Matter 14(50), R1357–R1390 (2002).
    [Crossref]
  19. R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
    [Crossref] [PubMed]
  20. J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
    [Crossref]
  21. Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
    [Crossref]
  22. H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
    [Crossref]
  23. C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
    [Crossref] [PubMed]
  24. V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
    [Crossref]
  25. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
    [Crossref]
  26. E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Phys. Rep. 344(1), 1–153 (2001).
    [Crossref]
  27. H.-S. Lee and H.-H. Park, “Band structure analysis of La0.7Sr0.3MnO3 perovskite manganite using a synchrotron,” Adv. Cond. Matter Phys. 2015, 746475 (2015).
  28. B. Modak, K. Srinivasu, and S. K. Ghosh, “Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: a hybrid density functional study,” RSC Advances 4(86), 45703–45709 (2014).
    [Crossref]
  29. L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
    [Crossref] [PubMed]
  30. X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
    [Crossref]

2017 (4)

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

A. Tomasino, A. Mazhorova, M. Clerici, M. Peccianti, S.-P. Ho, Y. Jestin, A. Pasquazi, A. Markov, X. Jin, R. Piccoli, S. Delprat, M. Chaker, A. Busacca, J. Ali, L. Razzari, and R. Morandotti, “Solid-state-biased coherent detection of ultra-broadband terahertz pulses,” Optica 4(11), 1358–1362 (2017).
[Crossref]

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
[Crossref]

H.-S. Lee and H.-H. Park, “Band structure analysis of La0.7Sr0.3MnO3 perovskite manganite using a synchrotron,” Adv. Cond. Matter Phys. 2015, 746475 (2015).

2014 (2)

B. Modak, K. Srinivasu, and S. K. Ghosh, “Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: a hybrid density functional study,” RSC Advances 4(86), 45703–45709 (2014).
[Crossref]

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

2013 (2)

L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
[Crossref] [PubMed]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

2012 (1)

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

2011 (1)

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

2009 (2)

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

2006 (2)

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

2005 (2)

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

2003 (1)

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

2002 (1)

R. D. Averitt and A. J. Taylor, “Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials,” J. Phys. Condens. Matter 14(50), R1357–R1390 (2002).
[Crossref]

2001 (3)

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Phys. Rep. 344(1), 1–153 (2001).
[Crossref]

2000 (1)

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

1997 (1)

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

1995 (1)

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

1969 (1)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

Ali, J.

Aoki, H.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Arima, T.

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

Ashida, M.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Averitt, R. D.

R. D. Averitt and A. J. Taylor, “Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials,” J. Phys. Condens. Matter 14(50), R1357–R1390 (2002).
[Crossref]

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Bai, X.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Basov, D. N.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Bernhard, C.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Busacca, A.

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Chaker, M.

Chen, A.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

Cheng, S. L.

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Cheng, Z.

Choi, E.-M.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Clark, A. M.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Clerici, M.

Dagotto, E.

E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Phys. Rep. 344(1), 1–153 (2001).
[Crossref]

Delprat, S.

Di Ventra, M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Ding, C.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Ding, X.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
[Crossref] [PubMed]

Drahokoupil, J.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Du, T.

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Fattakhova-Rohlfing, D.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

Ghosh, S. K.

B. Modak, K. Srinivasu, and S. K. Ghosh, “Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: a hybrid density functional study,” RSC Advances 4(86), 45703–45709 (2014).
[Crossref]

Golnik, A.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Hao, J.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Her, J. L.

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Hlinka, J.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

Ho, S.-P.

Hollmann, E.

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Horiuchi, S.

M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
[Crossref]

Hotta, T.

E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Phys. Rep. 344(1), 1–153 (2001).
[Crossref]

Huang, Z.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Ishikawa, T.

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

Jeng, H.-T.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

Jestin, Y.

Ji, J.

Jia, Q. X.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Jiang, L.

L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
[Crossref] [PubMed]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Jin, X.

Jin, Z.

Jokerst, N. M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Jones, S. P. P.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Kadlec, C.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

Kadlec, F.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Katayama, I.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Katsufuji, T.

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

Kawai, T.

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

Kawayama, I.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

Kida, N.

M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
[Crossref]

Kim, B.-J.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kim, H.-T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kinjo, R.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Klein, N.

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Kotani, K.

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

Kuo, M. X.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Kužel, P.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

Kwon, C.

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Lee, H.-S.

H.-S. Lee and H.-H. Park, “Band structure analysis of La0.7Sr0.3MnO3 perovskite manganite using a synchrotron,” Adv. Cond. Matter Phys. 2015, 746475 (2015).

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Lees, M. R.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Li, H.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Li, J.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

Lin, J. G.

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Lin, X.

Ling, F.

Liu, H. L.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Liu, J.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

Liu, M.

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Liu, X.

Liu, X. J.

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

Liu, Y.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Lloyd-Hughes, J.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Lobad, A. I.

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Lou, X.

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Lu, K. S.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Luo, C.

Ma, G.

Ma, W.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Machida, A.

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

MacManus-Driscoll, J. L.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Markov, A.

Mazhorova, A.

Misra, M.

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

Moch, P.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

Modak, B.

B. Modak, K. Srinivasu, and S. K. Ghosh, “Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: a hybrid density functional study,” RSC Advances 4(86), 45703–45709 (2014).
[Crossref]

Morandotti, R.

Moreo, A.

E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Phys. Rep. 344(1), 1–153 (2001).
[Crossref]

Moritomo, Y.

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

Mosley, C. D. W.

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Müller, V.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

Murakami, H.

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

Nagai, M.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Nakamura, A.

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

Nemec, H.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Okamoto, H.

M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
[Crossref]

Okimoto, Y.

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

Ostapchuk, T.

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

Ott, R.

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

Palit, S.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Panaitov, G.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

Park, H.-H.

H.-S. Lee and H.-H. Park, “Band structure analysis of La0.7Sr0.3MnO3 perovskite manganite using a synchrotron,” Adv. Cond. Matter Phys. 2015, 746475 (2015).

Pashkin, A.

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

Pasquazi, A.

Peccianti, M.

Petzelt, J.

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

Piccoli, R.

Rao, Y.

Razzari, L.

Rychetsky, I.

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

Rychetský, I.

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

Schubert, J.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

Sheng, Q.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
[Crossref] [PubMed]

Shimosato, H.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Si, W.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Sirenko, A. A.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Skoromets, V.

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

Smith, D. R.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Sotome, M.

M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
[Crossref]

Srinivasu, K.

B. Modak, K. Srinivasu, and S. K. Ghosh, “Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: a hybrid density functional study,” RSC Advances 4(86), 45703–45709 (2014).
[Crossref]

Takeda, J.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Tanaka, H.

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

Tanaka, K.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

Taylor, A. J.

R. D. Averitt and A. J. Taylor, “Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials,” J. Phys. Condens. Matter 14(50), R1357–R1390 (2002).
[Crossref]

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Thorsmølle, V. K.

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Tokura, Y.

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

Tomasino, A.

Tonouchi, M.

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

Trugman, S. A.

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Uba, L.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

Uba, S.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

Urushibara, A.

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

Wang, L. M.

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Wang, Z.

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Weng, S. M.

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

Wu, L.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
[Crossref] [PubMed]

Xi, X. X.

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Xu, N.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Xu, Y.

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Xu, Z.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

Yao, J.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
[Crossref] [PubMed]

L. Wu, L. Jiang, Q. Sheng, X. Ding, and J. Yao, “Optical tuning of dielectric properties of SrTiO3:Fe in the terahertz range,” Opt. Lett. 38(14), 2581–2583 (2013).
[Crossref] [PubMed]

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

Zhan, P.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Zhang, K.

Zhang, W.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Zhang, Z.

Zhao, X.

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

ACS Photonics (2)

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, “Terahertz Radiation Imaging of Ferroelectric Domain Topography in Room-Temperature Hydrogen-Bonded Supramolecular Ferroelectrics,” ACS Photonics 2(9), 1373–1383 (2015).
[Crossref]

Adv. Cond. Matter Phys. (1)

H.-S. Lee and H.-H. Park, “Band structure analysis of La0.7Sr0.3MnO3 perovskite manganite using a synchrotron,” Adv. Cond. Matter Phys. 2015, 746475 (2015).

Appl. Phys. Lett. (3)

L. Wu, L. Jiang, Y. Xu, X. Ding, and J. Yao, “Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range,” Appl. Phys. Lett. 103(19), 191111 (2013).
[Crossref]

P. Kužel, F. Kadlec, H. Němec, R. Ott, E. Hollmann, and N. Klein, “Dielectric tunability of SrTiO3 thin films in the terahertz range,” Appl. Phys. Lett. 88(10), 102901 (2006).
[Crossref]

M. Misra, K. Kotani, I. Kawayama, H. Murakami, and M. Tonouchi, “Observation of TO1 soft mode in SrTiO3 films by terahertz time domain spectroscopy,” Appl. Phys. Lett. 87(18), 182909 (2005).
[Crossref]

Ferroelectrics (1)

J. Petzelt, P. Kužel, I. Rychetský, A. Pashkin, and T. Ostapchuk, “Dielectric Response of Soft Modes in Ferroelectric Thin Films,” Ferroelectrics 288(1), 169–185 (2003).
[Crossref]

J. Appl. Phys. (3)

H. L. Liu, K. S. Lu, M. X. Kuo, L. Uba, S. Uba, L. M. Wang, and H.-T. Jeng, “Magneto-optical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy,” J. Appl. Phys. 99(4), 043908 (2006).
[Crossref]

F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40(8), 3389–3396 (1969).
[Crossref]

H. L. Liu, M. X. Kuo, J. L. Her, K. S. Lu, S. M. Weng, L. M. Wang, S. L. Cheng, and J. G. Lin, “Thickness-dependent optical properties of La0.7Sr0.3MnO3 thin films,” J. Appl. Phys. 97(11), 113528 (2005).
[Crossref]

J. Phys. Condens. Matter (2)

R. D. Averitt and A. J. Taylor, “Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials,” J. Phys. Condens. Matter 14(50), R1357–R1390 (2002).
[Crossref]

C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, “High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers,” J. Phys. Condens. Matter 21(11), 115902 (2009).
[Crossref] [PubMed]

Nano Lett. (1)

J. Lloyd-Hughes, C. D. W. Mosley, S. P. P. Jones, M. R. Lees, A. Chen, Q. X. Jia, E.-M. Choi, and J. L. MacManus-Driscoll, “Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films,” Nano Lett. 17(4), 2506–2511 (2017).
[Crossref] [PubMed]

Nature (1)

A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, J. Hao, W. Si, and X. X. Xi, “Soft-mode hardening in SrTiO3 thin films,” Nature 404(6776), 373–376 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rep. (1)

E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistant materials: the key role of phase separation,” Phys. Rep. 344(1), 1–153 (2001).
[Crossref]

Phys. Rev. B (4)

V. Skoromets, C. Kadlec, J. Drahokoupil, J. Schubert, J. Hlinka, and P. Kužel, “Systematic study of terahertz response of SrTiO3 based heterostructures: Influence of strain, temperature, and electric field,” Phys. Rev. B 89(21), 214116 (2014).
[Crossref]

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, “Variation of electronic structure in La1-xSrxMnO3f(0≤x≤0.3) as investigated by optical conductivity spectra,” Phys. Rev. B 55(7), 4206–4214 (1997).
[Crossref]

X. J. Liu, Y. Moritomo, A. Machida, A. Nakamura, H. Tanaka, and T. Kawai, “Photoinduced formation of charge-ordering clusters in a manganite film,” Phys. Rev. B 63(11), 115105 (2001).
[Crossref]

V. Skoromets, F. Kadlec, C. Kadlec, H. Němec, I. Rychetsky, G. Panaitov, V. Müller, D. Fattakhova-Rohlfing, P. Moch, and P. Kužel, “Tuning of dielectric properties of SrTiO3 in the terahertz range,” Phys. Rev. B 84(17), 174121 (2011).
[Crossref]

Phys. Rev. Lett. (3)

I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo, I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, “Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses,” Phys. Rev. Lett. 108(9), 097401 (2012).
[Crossref] [PubMed]

R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmølle, and A. J. Taylor, “Ultrafast Conductivity Dynamics in Colossal Magnetoresistance Manganites,” Phys. Rev. Lett. 87(1), 017401 (2001).
[Crossref] [PubMed]

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, “Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1-xSrxMnO3.,” Phys. Rev. Lett. 75(1), 109–112 (1995).
[Crossref] [PubMed]

RSC Advances (1)

B. Modak, K. Srinivasu, and S. K. Ghosh, “Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: a hybrid density functional study,” RSC Advances 4(86), 45703–45709 (2014).
[Crossref]

Sci. Rep. (1)

L. Wu, J. Liu, H. Li, C. Ding, N. Xu, X. Zhao, Z. Xu, Q. Sheng, J. Yao, J. Li, X. Ding, and W. Zhang, “Active KTaO3hybrid terahertz metamaterial,” Sci. Rep. 7(1), 6072 (2017).
[Crossref] [PubMed]

Science (1)

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Small (1)

L. Wu, T. Du, N. Xu, C. Ding, H. Li, Q. Sheng, M. Liu, J. Yao, Z. Wang, X. Lou, and W. Zhang, “A new Ba0.6Sr0.4TiO3–silicon hybrid metamaterial device in terahertz regime,” Small 12(19), 2610–2615 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Temperature dependence of resistivity for (LSMO20/STO20)10 and (LSMO5/STO5)40 (left axis). And the derivative of resistivity as a function of temperature (right axis). (b) X-ray diffraction scans of (LSMO20/STO20)10 and (LSMO5/STO5)40. The inset shows the XRD θ-2θ scans around the (002) Bragg reflection of the samples.
Fig. 2
Fig. 2 (a) Schematic diagram of the home-made THz-TDS system. The green arrow indicates the excitation under 532 nm continuous waves. (b) Schematic diagram of the home-made OPTP system. Here, λ/4 and W.P. refer to a quarter-wave plate and a Wollaston prism, respectively.
Fig. 3
Fig. 3 Time-domain signal waveforms of (a) (LSMO20/STO20)10 and (b) (LSMO5/STO5)40 under different optical pump powers of 532 nm CW laser, respectively. The insets show the variation of the peak value in detail.
Fig. 4
Fig. 4 (a) Real and (b) imaginary part of the permittivity of (LSMO20/STO20)10, as well as (c) real and (d) imaginary part of the permittivity of (LSMO5/STO5)40 are investigated at room temperature. Symbols: experimental data, lines: fitted data by using Eq. (3).
Fig. 5
Fig. 5 Optical power dependence of the soft-mode frequency of (LSMO20/STO20)10 and (LSMO5/STO5)40. The error bars shown in the figure correspond to the errors provided by the global fits obtained from Eq. (4).
Fig. 6
Fig. 6 Variation of the refractivity for (LSMO20/STO20)10 and (LSMO5/STO5)40 under external 532 nm optical excitation at 16.6 cm−1 and 32.2 cm−1. Symbols: experimental data; lines: linear fitted data.
Fig. 7
Fig. 7 (a) Transient differential transmission result of the 80-nm-thick LSMO thin film measured by the OPTP system. (b) Transient differential transmission results of (LSMO20/STO20)10 and (LSMO5/STO5)40 measured by the OPTP system. The circles represent the experimental data, the solid black line represents double-exponential expression fitting of (LSMO20/STO20)10, and the solid red line represents single-exponential expression fitting of (LSMO5/STO5)40. The pump fluence is 2mJ/cm2 for the three samples.

Tables (2)

Tables Icon

Table 1 Summary of the evaluated characteristics of (LSMO20/STO20)10 under different optical pumping power

Tables Icon

Table 2 Summary of the evaluated characteristics of (LSMO5/STO5)40 under different optical pumping power

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( ω ) = E s ( ω ) E r e f ( ω ) .
T ( ω ) = 2 N f ( N s + 1 ) e x p [ i ω ( N f 1 ) d f / c ] ( 1 + N f ) ( N f + N s ) + ( 1 N f ) ( N f N s ) e x p [ i ω N f d f / c ] .
ε = ε ω p 2 ω 2 + i ω Γ 1 + f ω 0 2 ω 2 i ω Γ 2 δ 2 / ( 1 i ω / γ ) .
Δ = 1 n n [ ( 1 Re ( ε c ) Re ( ε f i t ) ) 2 + ( 1 I m ( ε c ) I m ( ε f i t ) ) 2 ] .
Δ n E N P .

Metrics