Abstract

Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison

William R. Kerridge-Johns and Michael J. Damzen
J. Opt. Soc. Am. B 33(12) 2525-2534 (2016)

High efficiency >26 W diode end-pumped Alexandrite laser

Achaya Teppitaksak, Ara Minassian, Gabrielle M. Thomas, and Michael J. Damzen
Opt. Express 22(13) 16386-16392 (2014)

Tapered diode-pumped continuous-wave alexandrite laser

Ersen Beyatli, Ilyes Baali, Bernd Sumpf, Götz Erbert, Alfred Leitenstorfer, Alphan Sennaroglu, and Umit Demirbas
J. Opt. Soc. Am. B 30(12) 3184-3192 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
    [Crossref]
  2. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.
  3. A. Teppitaksak, A. Minassian, G. Thomas, and M. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
    [Crossref] [PubMed]
  4. E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
    [Crossref]
  5. J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
    [Crossref]
  6. M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
    [Crossref]
  7. P. Pichon, A. Barbet, J.-P. Blanchot, F. Druon, F. Balembois, and P. Georges, “Led-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42, 4191–4194 (2017).
    [Crossref] [PubMed]
  8. S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
    [Crossref]
  9. J. Kuper and D. Brown, “High efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
    [Crossref]
  10. M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
    [Crossref] [PubMed]
  11. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave Alexandrite laser,” J. Opt. Soc. Am. B 30, 3184–3192 (2013).
    [Crossref]
  12. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold Alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4, 776–789 (2014).
    [Crossref]
  13. M. Shand, J. Walling, and H. Jenssen, “Ground state absorption in the lasing wavelength region of Alexandrite: Theory and experiment,” IEEE J. Quantum Electron. 18, 167–169 (1982).
    [Crossref]
  14. M. Shand, J. Walling, and R. Morris, “Excited-state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52, 953–955 (1981).
    [Crossref]
  15. M. Shand and J. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
    [Crossref]
  16. M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
    [Crossref]
  17. W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33, 2525–2534 (2016).
    [Crossref]
  18. Z. Zhang, K. Grattan, and A. Palmer, “Thermal characteristics of Alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. 73, 3493–3498 (1993).
    [Crossref]
  19. D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
    [Crossref]
  20. W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12, 125002 (2015).
    [Crossref]
  21. M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
    [Crossref]
  22. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
    [Crossref]
  23. M. Shand and H. Jenssen, “Temperature dependence of the excited-state absorption of Alexandrite,” IEEE J. Quantum Electron. 19, 480–484 (1983).
    [Crossref]

2017 (3)

2016 (2)

W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33, 2525–2534 (2016).
[Crossref]

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

2015 (1)

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12, 125002 (2015).
[Crossref]

2014 (2)

2013 (1)

2006 (1)

J. Kuper and D. Brown, “High efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

1999 (1)

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

1993 (2)

Z. Zhang, K. Grattan, and A. Palmer, “Thermal characteristics of Alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. 73, 3493–3498 (1993).
[Crossref]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

1985 (1)

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

1983 (2)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

M. Shand and H. Jenssen, “Temperature dependence of the excited-state absorption of Alexandrite,” IEEE J. Quantum Electron. 19, 480–484 (1983).
[Crossref]

1982 (2)

M. Shand and J. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[Crossref]

M. Shand, J. Walling, and H. Jenssen, “Ground state absorption in the lasing wavelength region of Alexandrite: Theory and experiment,” IEEE J. Quantum Electron. 18, 167–169 (1982).
[Crossref]

1981 (1)

M. Shand, J. Walling, and R. Morris, “Excited-state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52, 953–955 (1981).
[Crossref]

1980 (1)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

1964 (1)

D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Abramovich, D.

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Arbabzadah, E.

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.

Baali, I.

Balembois, F.

Barbet, A.

Benmair, R. M.

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Beyatli, E.

Blanchot, J.-P.

Brown, D.

J. Kuper and D. Brown, “High efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Cech, M.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
[Crossref]

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.

Damzen, M.

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

A. Teppitaksak, A. Minassian, G. Thomas, and M. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
[Crossref] [PubMed]

Damzen, M. J.

Demirbas, U.

Druon, F.

Erbert, G.

Fibrich, M.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
[Crossref]

Gausmann, S.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Georges, P.

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Grattan, K.

Z. Zhang, K. Grattan, and A. Palmer, “Thermal characteristics of Alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. 73, 3493–3498 (1993).
[Crossref]

Harter, D.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Hartung, A.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Heller, D.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Hengesbach, S.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Hoeffner, J.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Hoffmann, H.-D.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Jelínková, H.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
[Crossref]

Jenssen, H.

M. Shand and H. Jenssen, “Temperature dependence of the excited-state absorption of Alexandrite,” IEEE J. Quantum Electron. 19, 480–484 (1983).
[Crossref]

M. Shand, J. Walling, and H. Jenssen, “Ground state absorption in the lasing wavelength region of Alexandrite: Theory and experiment,” IEEE J. Quantum Electron. 18, 167–169 (1982).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Jungbluth, B.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Kerridge-Johns, W. R.

W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33, 2525–2534 (2016).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12, 125002 (2015).
[Crossref]

Krupkin, V.

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Kuper, J.

J. Kuper and D. Brown, “High efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Kuper, J. W.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.

Kurt, A.

Lai, S. T.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

Lando, M.

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Leitenstorfer, A.

McCumber, D.

D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Minassian, A.

Morris, R.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

M. Shand, J. Walling, and R. Morris, “Excited-state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52, 953–955 (1981).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Munk, A.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

O’Dell, E.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Palmer, A.

Z. Zhang, K. Grattan, and A. Palmer, “Thermal characteristics of Alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. 73, 3493–3498 (1993).
[Crossref]

Pete, J.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Peterson, O.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Pichon, P.

Samelson, H.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Shand, M.

M. Shand and H. Jenssen, “Temperature dependence of the excited-state absorption of Alexandrite,” IEEE J. Quantum Electron. 19, 480–484 (1983).
[Crossref]

M. Shand and J. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[Crossref]

M. Shand, J. Walling, and H. Jenssen, “Ground state absorption in the lasing wavelength region of Alexandrite: Theory and experiment,” IEEE J. Quantum Electron. 18, 167–169 (1982).
[Crossref]

M. Shand, J. Walling, and R. Morris, “Excited-state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52, 953–955 (1981).
[Crossref]

Shand, M. L.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

Shimony, Y.

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Strotkamp, M.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Šulc, J.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
[Crossref]

Sumpf, B.

Teppitaksak, A.

Thomas, G.

Thomas, G. M.

Traub, M.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Vyhlídal, D.

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
[Crossref]

Walling, J.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

M. Shand and J. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[Crossref]

M. Shand, J. Walling, and H. Jenssen, “Ground state absorption in the lasing wavelength region of Alexandrite: Theory and experiment,” IEEE J. Quantum Electron. 18, 167–169 (1982).
[Crossref]

M. Shand, J. Walling, and R. Morris, “Excited-state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52, 953–955 (1981).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Witte, U.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Yogev, A.

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Yorulmaz, I.

Zhang, Z.

Z. Zhang, K. Grattan, and A. Palmer, “Thermal characteristics of Alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. 73, 3493–3498 (1993).
[Crossref]

IEEE J. Quantum Electron. (5)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable Alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

M. Shand, J. Walling, and H. Jenssen, “Ground state absorption in the lasing wavelength region of Alexandrite: Theory and experiment,” IEEE J. Quantum Electron. 18, 167–169 (1982).
[Crossref]

M. Shand and J. Walling, “Excited-state absorption in the lasing wavelength region of Alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982).
[Crossref]

M. Shand and H. Jenssen, “Temperature dependence of the excited-state absorption of Alexandrite,” IEEE J. Quantum Electron. 19, 480–484 (1983).
[Crossref]

J. Appl. Phys. (3)

Z. Zhang, K. Grattan, and A. Palmer, “Thermal characteristics of Alexandrite fluorescence decay at high temperatures, induced by a visible laser diode emission,” J. Appl. Phys. 73, 3493–3498 (1993).
[Crossref]

M. Shand, J. Walling, and R. Morris, “Excited-state absorption in the pump region of Alexandrite,” J. Appl. Phys. 52, 953–955 (1981).
[Crossref]

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

M. Fibrich, J. Šulc, D. Vyhlídal, H. Jelínková, and M. Čech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400k temperature range,” Laser Phys. 27, 115801 (2017).
[Crossref]

Laser Phys. Lett. (2)

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12, 125002 (2015).
[Crossref]

E. Arbabzadah and M. Damzen, “Fibre-coupled red diode-pumped alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

Opt. Commun. (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

M. Lando, Y. Shimony, R. M. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Proc. SPIE (1)

J. Kuper and D. Brown, “High efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Other (2)

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper CL3.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (Optical Society of America, 2013), paper ATu3A.42.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The two cavity configurations investigated: (a) compact and (b) extended tunable. The pump was polarised parallel to the b-axis of the Alexandrite. The laser wavelength of the extended cavity could be tuned with the birefringent filter (BiFi).
Fig. 2
Fig. 2 The laser output power versus absorbed pump power for the compact cavity with a record slope efficiency of 54.4 %. Inset: Spatial mode profile at 1.22 W output power and the laser wavelength spectrum.
Fig. 3
Fig. 3 The laser wavelength versus crystal temperature in the compact cavity for output coupler reflectances R. The theoretical predictions are also shown based on the model in Section 4
Fig. 4
Fig. 4 The output laser power versus input pump power for the extended cavity with no birefringent plate. The Alexandrite crystal temperature was 60 °C. Inset: Spatial mode profile at 0.95 W output power and the laser wavelength spectrum.
Fig. 5
Fig. 5 (a) The laser output power versus laser wavelength at the optimum crystal temperature and at a fixed crystal temperature of 60 °C. The optimum crystal temperature is given on the right axis of the graph. (b) The typical frequency spectrum of the output, with a full-width half maximum of 2.1 GHz.
Fig. 6
Fig. 6 The threshold (top) and slope efficiency (bottom) of the laser at 10 °C, 60 °C and 105 °C crystal temperatures (T) against laser output wavelength. Dashed curves are the results of the analytical model.
Fig. 7
Fig. 7 Diagram of the energy level structure of a quasi-three level laser, with a fourth level providing ESA at the pump wavelength. Parameters: ni are the populations of the ith levels; σ0 and σ1 are the pump ground and excite-state absorption cross sections, respectively; σa and σ1a are the laser ground and excited-state absorption cross sections, respectively; σe is the laser emission cross section; τf is the laser level fluorescence lifetime; τ21 and τ31 are non-radiative lifetimes.
Fig. 8
Fig. 8 The laser GSA, ESA and emission cross sections with wavelength at 28 °C. The GSA cross section has been magnified by a factor of 5. The three regimes of operation are indicated.
Fig. 9
Fig. 9 The fluorescence lifetime (black), net emission cross section (σeσ1a) at 760 nm (red), and their rescaled product in arbitrary units (dashed) against crystal temperature in Alexandrite.
Fig. 10
Fig. 10 Bottom - The pump ESA to GSA ratio γ values (red squares) against crystal temperature with a linear fit and 95 % confidence band (red area). Also shown is how γ would change assuming the ESA cross section is constant and measured GSA changes in α0 (black points). Top - The GSA coefficient (α0) against crystal temperature from small signal transmission measurements.
Fig. 11
Fig. 11 The wavelength dependence of the instrinic slope efficiency η0(λl) of Alexandrite at 28 °C for red diode pumped at 636 nm, with the constituent terms of the Stokes, laser ESA and pump ESA efficiencies.
Fig. 12
Fig. 12 The maximum output coupling efficiency (1− γl) versus laser wavelength at different crystal temperatures.
Fig. 13
Fig. 13 The pump ESA quantum efficiency versus laser wavelength for different crystal temperatures. In Alexandrite ηp = ηp,ESA.
Fig. 14
Fig. 14 From the model in Eqs. (4)(9), the slope efficiency (top, ηs) and threshold (bottom, Pth) of an Alexandrite laser with output coupler R = 98 % and round trip loss L = 0.5 %, versus laser wavelength and crystal temperature. The hatched regions are where lasing is not possible due to zero net gain.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

σ a ( T , E ) = σ e ( T , E ) e [ E E * ( T ) ] k b T ,
τ f = τ E [ 1 + e Δ E / k b T 1 + ( τ E / τ T ) Δ E / k b T ] ,
F = ln [ ( 1 L ) R ] + 2 α a l 2 ( α e + α a α 1 a ) ,
I 0 th I s = 1 γ η p , 0 ( e α 1 F 1 1 T e α 1 F ) ,
η s = η o c η q η a η p ,
η o c = ( 1 γ l ) [ ln R ln R ln ( 1 L ) + 2 γ l α a l ] ,
η q = λ p / λ l ,
η a = 1 T ,
η p , E S A = α 1 ( 1 + a γ ) [ 1 T e α 1   [ F a ( l F ) ] 1 T ] [ F a ( l F ) e α 1 [ F a ( l F ) ] 1 ] .
η 0 = η p , 0 λ p λ l [ 1 γ l 1 + ( σ a / σ e ) γ ] .

Metrics