Abstract

In this paper, we present the results of thermochemical LIPSS formation on a chromium film with a thickness in the range of 28-350 nm induced by femtosecond laser radiation (λ = 1026 nm, ν = 200 kHz, τ = 232 fs). The period, height, morphology and chemical composition of TLIPSS as a function of the metal film thickness and focusing configuration are investigated. The growth of TLIPSS period from 678 nm to 950 nm with increasing thickness of the film has been explained by a formation of oxides with different stoichiometry composition. So, the CrO2 oxide prevails in the composition for the case of TLIPSS formed on thin films which have the minimal period, whereas Cr2O3 oxide is dominant in the case of TLIPSS formed on thick chromium films which have the maximal period value. The results obtained are in agreement with numerical modeling of a period defined by the interference between an incident radiation and a scattered one from a single oxide ridge with a different chemical composition.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stoichiometry and structure driven optical properties of carbon incorporated titanium oxide thin films

Chang Mook Lee and Jaewu Choi
Opt. Mater. Express 6(11) 3594-3608 (2016)

Composite chromium and graphene oxide as saturable absorber in ytterbium-doped Q-switched fiber lasers

Liming Liu, Haroldo T. Hattori, Evgeny G. Mironov, and Abdul Khaleque
Appl. Opt. 53(6) 1173-1180 (2014)

Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser

Vadim P. Veiko, Roman A. Zakoldaev, Elena A. Shakhno, Dmitry A. Sinev, Zung K. Nguyen, Alexander V. Baranov, Kirill V. Bogdanov, Mindaugas Gedvilas, Gediminas Račiukaitis, Lidiya V. Vishnevskaya, and Elena N. Degtyareva
Opt. Mater. Express 9(6) 2729-2737 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
    [Crossref]
  2. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  3. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
    [Crossref]
  4. F. A. Müller, C. Kunz, and S. Gräf, “Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures,” Materials (Basel) 9(6), 1–29 (2016).
    [PubMed]
  5. J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
    [Crossref]
  6. A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation,” Laser Phys. Lett. 12(3), 036101 (2015).
    [Crossref]
  7. A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties,” Appl. Phys. B 123(1), 30 (2017).
    [Crossref]
  8. A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
    [Crossref]
  9. M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
    [Crossref]
  10. V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
    [Crossref]
  11. M. Gedvilas, G. Račiukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
    [Crossref]
  12. M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
    [Crossref]
  13. P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [Crossref]
  14. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  15. O. N. Senkov, D. B. Miracle, and S. A. Firstov, Metallic Materials with High Structural Efficiency (Kluwer Academic Publishers, 2004).
  16. N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
    [Crossref]
  17. D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).
  18. A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
    [Crossref]
  19. N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
    [Crossref]
  20. M. F. Al-Kuhaili and S. M. A. Durrani, “Optical properties of chromium oxide thin films deposited by electron-beam evaporation,” Opt. Mater. 29(6), 709–713 (2007).
    [Crossref]
  21. L. L. Chase, “Optical properties of CrO2 and MoO2 from 0.1 to 6 eV,” Phys. Rev. B 10(6), 2226–2231 (1974).
    [Crossref]
  22. J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
    [Crossref] [PubMed]
  23. G. Henderson and C. Weaver, “Optical Properties of Evaporated Films of Chromium and Copper,” J. Opt. Soc. Am. 56(11), 1551–1559 (1966).
    [Crossref]

2017 (6)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties,” Appl. Phys. B 123(1), 30 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

2016 (1)

F. A. Müller, C. Kunz, and S. Gräf, “Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures,” Materials (Basel) 9(6), 1–29 (2016).
[PubMed]

2015 (3)

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation,” Laser Phys. Lett. 12(3), 036101 (2015).
[Crossref]

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

2013 (2)

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

2011 (1)

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

2009 (1)

M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

2008 (2)

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

M. Gedvilas, G. Račiukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

2007 (1)

M. F. Al-Kuhaili and S. M. A. Durrani, “Optical properties of chromium oxide thin films deposited by electron-beam evaporation,” Opt. Mater. 29(6), 709–713 (2007).
[Crossref]

1974 (2)

L. L. Chase, “Optical properties of CrO2 and MoO2 from 0.1 to 6 eV,” Phys. Rev. B 10(6), 2226–2231 (1974).
[Crossref]

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

1967 (1)

N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
[Crossref]

1966 (1)

Ahmed, F.

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

Al-Kuhaili, M. F.

M. F. Al-Kuhaili and S. M. A. Durrani, “Optical properties of chromium oxide thin films deposited by electron-beam evaporation,” Opt. Mater. 29(6), 709–713 (2007).
[Crossref]

Arshi, N.

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

Babin, S. A.

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties,” Appl. Phys. B 123(1), 30 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation,” Laser Phys. Lett. 12(3), 036101 (2015).
[Crossref]

Baranov, A. V.

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Berwick, K.

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Bogdanov, K. V.

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Bonse, J.

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

Camacho-López, M. A.

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Camacho-López, S.

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Chase, L. L.

L. L. Chase, “Optical properties of CrO2 and MoO2 from 0.1 to 6 eV,” Phys. Rev. B 10(6), 2226–2231 (1974).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Domanowski, P.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Domaradzki, J.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Dostovalov, A. V.

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties,” Appl. Phys. B 123(1), 30 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation,” Laser Phys. Lett. 12(3), 036101 (2015).
[Crossref]

Dultsev, F. N.

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

Durrani, S. M. A.

M. F. Al-Kuhaili and S. M. A. Durrani, “Optical properties of chromium oxide thin films deposited by electron-beam evaporation,” Opt. Mater. 29(6), 709–713 (2007).
[Crossref]

Epperlein, N.

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Escobar-Alarcón, L.

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Evans, R.

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Fedorov, A. V.

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Gedvilas, M.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

M. Gedvilas, G. Račiukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Gräf, S.

F. A. Müller, C. Kunz, and S. Gräf, “Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures,” Materials (Basel) 9(6), 1–29 (2016).
[PubMed]

Henderson, G.

Höhm, S.

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

Ilday, F. Ö.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Indrišiunas, S.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Indyka, J.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Ivanov, A. I.

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Jurkowska, A.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Kaczmarek, D.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kalisz, M.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Kawai, N.

N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
[Crossref]

Kikuchi, S.

N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

Koo, B. H.

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

Korolkov, V. P.

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties,” Appl. Phys. B 123(1), 30 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation,” Laser Phys. Lett. 12(3), 036101 (2015).
[Crossref]

Krüger, J.

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

Kunz, C.

F. A. Müller, C. Kunz, and S. Gräf, “Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures,” Materials (Basel) 9(6), 1–29 (2016).
[PubMed]

Kuzivanov, M.

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

Lee, C. G.

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

Lu, J.

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

Mazur, M.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Mitchell, J. I.

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

Müller, F. A.

F. A. Müller, C. Kunz, and S. Gräf, “Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures,” Materials (Basel) 9(6), 1–29 (2016).
[PubMed]

Nam, W.

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

Okotrub, K. A.

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Raciukaitis, G.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

M. Gedvilas, G. Račiukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Regelskis, K.

M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

M. Gedvilas, G. Račiukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Sawaoka, A.

N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
[Crossref]

Shakhno, E.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Sinev, D.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Spaltmann, D.

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

Tamagawa, N.

N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
[Crossref]

Terentyev, V. S.

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

Traverso, L. M.

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

Veiko, V.

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Veiko, V. P.

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Voisiat, B.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

Weaver, C.

Wojcieszak, D.

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Xu, X.

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

Yarchuk, M.

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

Yarchuk, M. V.

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Yoon, J. H.

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

Zakoldaev, R.

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Zhou, N.

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties,” Appl. Phys. B 123(1), 30 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Gedvilas, G. Račiukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Appl. Surf. Sci. (3)

M. Gedvilas, B. Voisiat, G. Račiukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. V. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
[Crossref]

S. Camacho-López, R. Evans, L. Escobar-Alarcón, M. A. Camacho-López, and M. A. Camacho-López, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[Crossref]

Bull. Mater. Sci. (1)

N. Arshi, J. Lu, C. G. Lee, J. H. Yoon, B. H. Koo, and F. Ahmed, “Thickness effect on properties of titanium film deposited by d. c. magnetron sputtering and electron beam evaporation techniques,” Bull. Mater. Sci. 36(5), 807–812 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 109–123 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Raman Spectrosc. (1)

A. V. Baranov, K. V. Bogdanov, A. V. Fedorov, M. V. Yarchuk, A. I. Ivanov, V. P. Veiko, and K. Berwick, “Micro-Raman characterization of laser-induced local thermo-oxidation of thin chromium films,” J. Raman Spectrosc. 42(9), 1780–1783 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Kawai, A. Sawaoka, S. Kikuchi, and N. Tamagawa, “Reduction of CrO3 into CrO2 and Cr2O3 under Very High Pressure and High Temperature,” Jpn. J. Appl. Phys. 6(12), 1397–1399 (1967).
[Crossref]

Laser Phys. Lett. (1)

A. V. Dostovalov, V. P. Korolkov, and S. A. Babin, “Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation,” Laser Phys. Lett. 12(3), 036101 (2015).
[Crossref]

Mater. Sci. (1)

D. Wojcieszak, M. Mazur, J. Indyka, A. Jurkowska, M. Kalisz, P. Domanowski, D. Kaczmarek, and J. Domaradzki, “Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process,” Mater. Sci. 33(3), 660–668 (2015).

Materials (Basel) (1)

F. A. Müller, C. Kunz, and S. Gräf, “Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures,” Materials (Basel) 9(6), 1–29 (2016).
[PubMed]

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Opt. Mater. (1)

M. F. Al-Kuhaili and S. M. A. Durrani, “Optical properties of chromium oxide thin films deposited by electron-beam evaporation,” Opt. Mater. 29(6), 709–713 (2007).
[Crossref]

Phys. Rev. B (2)

L. L. Chase, “Optical properties of CrO2 and MoO2 from 0.1 to 6 eV,” Phys. Rev. B 10(6), 2226–2231 (1974).
[Crossref]

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Proc. SPIE (1)

J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, A. Rosenfeld, and J. Krüger, “Applications of laser-induced periodic surface structures (LIPSS),” Proc. SPIE 10092, 100920N (2017).
[Crossref]

Quantum Electron. (1)

A. V. Dostovalov, V. P. Korolkov, V. S. Terentyev, K. A. Okotrub, F. N. Dultsev, and S. A. Babin, “Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation,” Quantum Electron. 47(7), 631–637 (2017).
[Crossref]

Sci. Rep. (1)

J. I. Mitchell, N. Zhou, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction laser synthesis of silicon nanowires,” Sci. Rep. 4(1), 3908 (2015).
[Crossref] [PubMed]

Thin Solid Films (1)

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

O. N. Senkov, D. B. Miracle, and S. A. Firstov, Metallic Materials with High Structural Efficiency (Kluwer Academic Publishers, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Configurations of TLIPSS formation: focusing on the air-metal interface (a), focusing on the glass-metal interface (b).
Fig. 2
Fig. 2 The results of TLIPSS formation (SEM images) at different thickness of the metal film: 28 nm, 110 nJ (a), 42 nm, 150 nJ (b), 70 nm, 100 nJ (c), 100 nm, 110 nJ (d), 125 nm, 110 nJ (e), 180 nm, 90 nJ (f), 240 nm, 90 nJ (g), 350 nm, 90 nJ (h).
Fig. 3
Fig. 3 The profile of TLIPSS structures fabricated at a different thickness of the metal film: 28 nm, 110 nJ (a), 42 nm, 150 nJ (b), 70 nm, 100 nJ (c), 100 nm, 110 nJ (d), 125 nm, 110 nJ (e), 180 nm, 90 nJ (f). Corresponding AFM images of the surface of the metal film with TLIPSS fabricated at a different thickness of the metal film: 28 nm, 110 nJ (g), 100 nm, 110 nJ (h), 180 nm, 90 nJ (i).
Fig. 4
Fig. 4 The period (a) and the height of oxide part of TLIPSS (b) as a function of the metal film thickness.
Fig. 5
Fig. 5 A set of spectra used in the comparative analysis of TLIPSS formed on metal films with different thickness and images of the corresponding regions of TLIPSS obtained with an optical microscope. Different colors indicate the spectra obtained from different local regions of the same TLIPSS.
Fig. 6
Fig. 6 a) Fits of averaged Raman spectra from TLIPSS formed on metal films with different thickness. The black lines are the averaged spectra, the green and blue lines are the reference spectra of CrO2 and Cr2O3 used for fitting. Red lines are the results of fitting the averaged spectra with a combination of standard spectra, b) the ratio of the intensities of Raman contributions from CrO2 and Cr2O3 as a function of the metal film thickness (points), liner fit (solid line).
Fig. 7
Fig. 7 Comparison of the results of TLIPSS formation when the sample is irradiated from the air-metal interface at 120 nJ (a) and from glass-metal interface at 85 nJ (b) on a 28 nm film; from the air-metal interface at 100 nJ (c) and from the glass-metal interface at 110 nJ (d) on a 70 nm film.
Fig. 8
Fig. 8 Comparison of the Raman spectra obtained from TLIPSS formed by irradiation from the air-metal interface (Top) and irradiation from the glass-metal interface (Bottom): a) TLIPSS formed on a chromium film with h = 28 nm; b) TLIPSS formed on a chromium film with h = 70 nm.
Fig. 9
Fig. 9 (a) The calculated field distribution in the interference of the incident light with a scattered one from a single ridge (the color bar is stripped-down to increase the contrast), (b) The intensity profile, depending on the material of the oxide ridge (CrO2, Cr2O3).
Fig. 10
Fig. 10 The intensity profile for different values of the refractive index of the oxide ridge in the case of Cr2O3 (a) and CrO2 (b).

Tables (1)

Tables Icon

Table 1 Physical properties of chromium oxides:

Metrics