Abstract

We present a method to measure the vector-field light scattering of individual microscopic objects. The polarization-dependent optical field images are measured with quantitative phase imaging at the sample plane, and then numerically propagated to the far-field plane. This approach allows the two-dimensional polarization-dependent angle-resolved light scattered patterns from individual object to be obtained with high precision and sensitivity. Using this method, we present the measurements of the polarization-dependent light scattering of a liquid crystal droplet and individual silver nanowires over scattering angles of 50°. In addition, the spectroscopic extension of the polarization-dependent angle-resolved light scattering is demonstrated using wavelength-scanning illumination.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectro-angular light scattering measurements of individual microscopic objects

JaeHwang Jung and YongKeun Park
Opt. Express 22(4) 4108-4114 (2014)

Label-free identification of individual bacteria using Fourier transform light scattering

YoungJu Jo, JaeHwang Jung, Min-hyeok Kim, HyunJoo Park, Suk-Jo Kang, and YongKeun Park
Opt. Express 23(12) 15792-15805 (2015)

Synthetic Fourier transform light scattering

KyeoReh Lee, Hyeon-Don Kim, Kyoohyun Kim, Youngchan Kim, Timothy R. Hillman, Bumki Min, and YongKeun Park
Opt. Express 21(19) 22453-22463 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Zimm, “Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions,” J. Chem. Phys. 16(12), 1099–1116 (1948).
    [Crossref]
  2. C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
    [Crossref]
  3. D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
    [Crossref]
  4. J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 020302 (2013).
    [Crossref] [PubMed]
  5. A. Wang, R. F. Garmann, and V. N. Manoharan, “Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy,” Opt. Express 24(21), 23719–23725 (2016).
    [Crossref] [PubMed]
  6. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. PM166 (SPIE, 2007).
  7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  8. H. C. Hulst and H. C. van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).
  9. N. Le Thomas, R. Houdré, M. V. Kotlyar, D. O’Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24(12), 2964–2971 (2007).
    [Crossref]
  10. D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
    [Crossref]
  11. R. Oldenbourg, “New views on polarization microscopy,” Eur. Cell. Mater. 1, 13 (2001).
  12. K. Florine-Casteel, “Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy,” Biophys. J. 57(6), 1199–1215 (1990).
    [Crossref] [PubMed]
  13. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).
  14. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  15. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [Crossref] [PubMed]
  16. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  17. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [Crossref] [PubMed]
  18. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  19. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
    [Crossref] [PubMed]
  20. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]
  21. H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
    [Crossref]
  22. H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
    [Crossref]
  23. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
    [Crossref] [PubMed]
  24. M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
    [Crossref] [PubMed]
  25. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
    [Crossref] [PubMed]
  26. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
    [Crossref] [PubMed]
  27. K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
    [Crossref] [PubMed]
  28. H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37(13), 2577–2579 (2012).
    [Crossref] [PubMed]
  29. Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
    [Crossref] [PubMed]
  30. H. C. Van de Hulst and V. Twersky, “Light scattering by small particles,” Phys. Today 10(12), 28–30 (1957).
    [Crossref]
  31. K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
    [Crossref] [PubMed]
  32. J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
    [Crossref]
  33. S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
    [Crossref] [PubMed]
  34. J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
    [Crossref] [PubMed]
  35. P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
    [Crossref] [PubMed]
  36. P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
    [Crossref] [PubMed]
  37. Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
    [Crossref] [PubMed]
  38. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  39. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [Crossref] [PubMed]
  40. S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23(12), 16383–16406 (2015).
    [Crossref] [PubMed]
  41. X. Liu, B.-Y. Wang, and C.-S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
    [Crossref] [PubMed]
  42. C. Lin, X. Shen, and Q. Xu, “Optical image encoding based on digital holographic recording on polarization state of vector wave,” Appl. Opt. 52(28), 6931–6939 (2013).
    [Crossref] [PubMed]
  43. M. Sreelal, R. V. Vinu, and R. Singh, “Jones matrix microscopy from a single shot measurement,” Opt. Lett.in press.
  44. J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
    [Crossref] [PubMed]
  45. X. Liu, Y. Yang, L. Han, and C.-S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
    [Crossref] [PubMed]
  46. Y. Zhu, M. T. Rinehart, F. E. Robles, and A. Wax, “Polarization and Spectral Interferometric Techniques for Quantitative Phase Microscopy,” in Biomedical Optical Phase Microscopy and Nanoscopy (Elsevier, 2012), pp. 281–310.
  47. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
    [Crossref] [PubMed]
  48. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  49. I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).
  50. G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
    [Crossref] [PubMed]
  51. R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
    [Crossref] [PubMed]
  52. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
    [Crossref] [PubMed]
  53. Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
    [Crossref] [PubMed]
  54. A. M. Vrabioiu and T. J. Mitchison, “Structural insights into yeast septin organization from polarized fluorescence microscopy,” Nature 443(7110), 466–469 (2006).
    [Crossref] [PubMed]
  55. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]

2017 (3)

2016 (7)

A. Wang, R. F. Garmann, and V. N. Manoharan, “Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy,” Opt. Express 24(21), 23719–23725 (2016).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (4)

X. Liu, B.-Y. Wang, and C.-S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
[Crossref] [PubMed]

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

2013 (3)

C. Lin, X. Shen, and Q. Xu, “Optical image encoding based on digital holographic recording on polarization state of vector wave,” Appl. Opt. 52(28), 6931–6939 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 020302 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[Crossref] [PubMed]

2010 (4)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (4)

2005 (1)

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

2001 (1)

R. Oldenbourg, “New views on polarization microscopy,” Eur. Cell. Mater. 1, 13 (2001).

2000 (1)

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

1990 (2)

K. Florine-Casteel, “Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy,” Biophys. J. 57(6), 1199–1215 (1990).
[Crossref] [PubMed]

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

1986 (1)

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

1978 (1)

C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
[Crossref]

1968 (1)

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

1957 (1)

H. C. Van de Hulst and V. Twersky, “Light scattering by small particles,” Phys. Today 10(12), 28–30 (1957).
[Crossref]

1948 (1)

B. H. Zimm, “Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions,” J. Chem. Phys. 16(12), 1099–1116 (1948).
[Crossref]

Abidi, S. Z.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Aknoun, S.

Backman, V.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Badizadegan, K.

Balla, A.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[Crossref] [PubMed]

Barman, I.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Berl, E.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Bon, P.

Boppart, M.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Boppart, M. D.

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

Boppart, S. A.

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Boustany, N. N.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Brakenhoff, G. J.

Brongersma, M. L.

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Burghard, M.

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Cho, M.

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choi, W.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Choi, Y.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Clark, N. A.

C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
[Crossref]

Colomb, T.

Cuche, E.

Dao, M.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Dasari, R. R.

de Boer, J. F.

Debnath, S. K.

Depeursinge, C.

Diez-Silva, M.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Ding, H.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Doane, J. W.

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Du, E.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Duesberg, G. S.

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

Dürr, F.

Ee, H.-S.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Feld, M. S.

Fitzgerald, J.

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Florine-Casteel, K.

K. Florine-Casteel, “Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy,” Biophys. J. 57(6), 1199–1215 (1990).
[Crossref] [PubMed]

Fu, D.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Fung, J.

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 020302 (2013).
[Crossref] [PubMed]

Furst, D.

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Garmann, R. F.

Gillette, M. U.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

Guo, C.-S.

Han, L.

Harris, J. S.

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Herbolzheimer, E.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

Higgins, J. M.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Hitzenberger, C. K.

Hong, S.-C.

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Hosseini, P.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Houdré, R.

Huang, K. C.

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Huo, Y.

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Ikeda, T.

Jang, J.

Jeong, J.

Jeong, K.-Y.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Jeong, Y.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

Jo, Y.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Joo, J.-H.

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Jung, J.

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kamal, T.

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Kang, J.-H.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Kang, Y. G.

Kato, G. J.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Kazyoba, P. E.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Kim, B.-M.

Kim, D.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Kim, D.-J.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Kim, J.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Kim, K.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
[Crossref] [PubMed]

Kim, K.-H.

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Kim, M. W.

Kim, Y.

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Kotlyar, M. V.

Krauss, T. F.

Le Thomas, N.

Lee, E.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

Lee, I.-B.

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Lee, J. W.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

Lee, J.-H.

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Lee, K.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, K. J.

Lee, M.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

Lee, S.

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, S. Y. C.

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Limberger, H. G.

Lin, C.

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, J.

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

Liu, X.

Loa, I.

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

Manoharan, V. N.

A. Wang, R. F. Garmann, and V. N. Manoharan, “Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy,” Opt. Express 24(21), 23719–23725 (2016).
[Crossref] [PubMed]

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 020302 (2013).
[Crossref] [PubMed]

Marquet, P.

Massaga, J. J.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

Matemba, L. E.

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

McCarty, D. J.

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Meyer, R. B.

C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
[Crossref]

Millet, L. J.

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

Mitchison, T. J.

A. M. Vrabioiu and T. J. Mitchison, “Structural insights into yeast septin organization from polarized fluorescence microscopy,” Nature 443(7110), 466–469 (2006).
[Crossref] [PubMed]

Monneret, S.

Moon, H.-M.

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Müller, M.

Nam, K. T.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

Nguyen, F.

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Nguyen, F. T.

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

O’Brien, D.

Oh-E, M.

Oldenbourg, R.

R. Oldenbourg, “New views on polarization microscopy,” Eur. Cell. Mater. 1, 13 (2001).

Ozcan, A.

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Papageorgiou, D. P.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Park, H.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37(13), 2577–2579 (2012).
[Crossref] [PubMed]

Park, H.-G.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Park, J.

Park, J.-H.

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

Park, K.

Park, S.-Y.

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Park, Y.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

H. Yu, H. Park, Y. Kim, M. W. Kim, and Y. Park, “Fourier-transform light scattering of individual colloidal clusters,” Opt. Lett. 37(13), 2577–2579 (2012).
[Crossref] [PubMed]

K. Kim and Y. Park, “Fourier transform light scattering angular spectroscopy using digital inline holography,” Opt. Lett. 37(19), 4161–4163 (2012).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Phelps, P.

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Pillai, R. S.

Pindak, R.

C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
[Crossref]

Pine, D.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

Popescu, G.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[Crossref] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Roth, S.

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

Roth, S. V.

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Salathé, R.-P.

Sarmiento, T.

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Savatier, J.

Seo, M.-K.

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Shen, X.

Shin, D.

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

Singh, R.

M. Sreelal, R. V. Vinu, and R. Singh, “Jones matrix microscopy from a single shot measurement,” Opt. Lett.in press.

So, P. T.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Sreelal, M.

M. Sreelal, R. V. Vinu, and R. Singh, “Jones matrix microscopy from a single shot measurement,” Opt. Lett.in press.

Steele, A. D.

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Suresh, S.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Syassen, K.

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

Tangella, K.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[Crossref] [PubMed]

Twersky, V.

H. C. Van de Hulst and V. Twersky, “Light scattering by small particles,” Phys. Today 10(12), 28–30 (1957).
[Crossref]

Van de Hulst, H. C.

H. C. Van de Hulst and V. Twersky, “Light scattering by small particles,” Phys. Today 10(12), 28–30 (1957).
[Crossref]

Vinu, R. V.

M. Sreelal, R. V. Vinu, and R. Singh, “Jones matrix microscopy from a single shot measurement,” Opt. Lett.in press.

Vrabioiu, A. M.

A. M. Vrabioiu and T. J. Mitchison, “Structural insights into yeast septin organization from polarized fluorescence microscopy,” Nature 443(7110), 466–469 (2006).
[Crossref] [PubMed]

Wang, A.

Wang, B.-Y.

Wang, Z.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[Crossref] [PubMed]

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

Wattellier, B.

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Weitz, D.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

Xu, Q.

Yang, T. D.

Yang, Y.

Yaqoob, Z.

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

Yasuno, Y.

Yokoyama, H.

Yoon, J.

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

Young, C. Y.

C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
[Crossref]

Yu, H.

Zhang, P.

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhu, J.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

Zimm, B. H.

B. H. Zimm, “Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions,” J. Chem. Phys. 16(12), 1099–1116 (1948).
[Crossref]

Žumer, S.

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12(1), 285–314 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Biophys. J. (1)

K. Florine-Casteel, “Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy,” Biophys. J. 57(6), 1199–1215 (1990).
[Crossref] [PubMed]

Eur. Cell. Mater. (1)

R. Oldenbourg, “New views on polarization microscopy,” Eur. Cell. Mater. 1, 13 (2001).

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ding, E. Berl, Z. Wang, L. J. Millet, M. U. Gillette, J. Liu, M. Boppart, and G. Popescu, “Fourier transform light scattering of biological structure and dynamics,” IEEE J. Sel. Top. Quantum Electron. 16(4), 909–918 (2010).
[Crossref]

J. Biomed. Opt. (3)

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[Crossref] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

B. H. Zimm, “Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions,” J. Chem. Phys. 16(12), 1099–1116 (1948).
[Crossref]

J. Comput. Theor. Nanosci. (1)

H. Ding, Z. Wang, F. T. Nguyen, S. A. Boppart, L. J. Millet, M. U. Gillette, J. Liu, M. D. Boppart, and G. Popescu, “Fourier transform light scattering (FTLS) of cells and tissues,” J. Comput. Theor. Nanosci. 7(12), 2501–2511 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51(18), 2101–2127 (1990).
[Crossref]

JAMA (1)

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Nat. Commun. (1)

K. C. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3(1), 1005 (2012).
[Crossref] [PubMed]

Nature (1)

A. M. Vrabioiu and T. J. Mitchison, “Structural insights into yeast septin organization from polarized fluorescence microscopy,” Nature 443(7110), 466–469 (2006).
[Crossref] [PubMed]

Opt. Express (9)

J. Park, H. Yu, J.-H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

X. Liu, Y. Yang, L. Han, and C.-S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23(12), 16383–16406 (2015).
[Crossref] [PubMed]

R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
[Crossref] [PubMed]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

A. Wang, R. F. Garmann, and V. N. Manoharan, “Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy,” Opt. Express 24(21), 23719–23725 (2016).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. A Gen. Phys. (1)

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

D. Kim, K.-Y. Jeong, J. Kim, H.-S. Ee, J.-H. Kang, H.-G. Park, and M.-K. Seo, “Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure,” Phys. Rev. Appl. 8(5), 054024 (2017).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Fung and V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 020302 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, “Light-scattering study of two-dimensional molecular-orientation fluctuations in a freely suspended ferroelectric liquid-crystal film,” Phys. Rev. Lett. 40(12), 773–776 (1978).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, “Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,” Phys. Rev. Lett. 85(25), 5436–5439 (2000).
[Crossref] [PubMed]

Phys. Today (1)

H. C. Van de Hulst and V. Twersky, “Light scattering by small particles,” Phys. Today 10(12), 28–30 (1957).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Hosseini, S. Z. Abidi, E. Du, D. P. Papageorgiou, Y. Choi, Y. Park, J. M. Higgins, G. J. Kato, S. Suresh, M. Dao, Z. Yaqoob, and P. T. So, “Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease,” Proc. Natl. Acad. Sci. U.S.A. 113(34), 9527–9532 (2016).
[Crossref] [PubMed]

RSC Advances (1)

J.-H. Lee, T. Kamal, S. V. Roth, P. Zhang, and S.-Y. Park, “Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell,” RSC Advances 4(76), 40617–40625 (2014).
[Crossref]

Sci. Rep. (4)

J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, and Y. Park, “Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging,” Sci. Rep. 6(1), 31698 (2016).
[Crossref] [PubMed]

M. Lee, E. Lee, J. Jung, H. Yu, K. Kim, J. Yoon, S. Lee, Y. Jeong, and Y. Park, “Label-free optical quantification of structural alterations in Alzheimer’s disease,” Sci. Rep. 6(1), 31034 (2016).
[Crossref] [PubMed]

Y. Jo, J. Jung, J. W. Lee, D. Shin, H. Park, K. T. Nam, J.-H. Park, and Y. Park, “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering,” Sci. Rep. 4(1), 5090 (2014).
[Crossref] [PubMed]

Y. Zhang, S. Y. C. Lee, Y. Zhang, D. Furst, J. Fitzgerald, and A. Ozcan, “Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis,” Sci. Rep. 6(1), 28793 (2016).
[Crossref] [PubMed]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Other (7)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. PM166 (SPIE, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

H. C. Hulst and H. C. van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

I.-B. Lee, H.-M. Moon, J.-H. Joo, K.-H. Kim, S.-C. Hong, and M. Cho, “Interferometric Scattering Microscopy with Polarization-Selective Dual Detection Scheme: Capturing the Orientational Information of Anisotropic Nanometric Objects,” ACS Photonics, in press (2017).

Y. Zhu, M. T. Rinehart, F. E. Robles, and A. Wax, “Polarization and Spectral Interferometric Techniques for Quantitative Phase Microscopy,” in Biomedical Optical Phase Microscopy and Nanoscopy (Elsevier, 2012), pp. 281–310.

M. Sreelal, R. V. Vinu, and R. Singh, “Jones matrix microscopy from a single shot measurement,” Opt. Lett.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experimental setup. (a) Polarization-dependent optical field images are measured using diffraction phase microscopy equipped with a polarizer and an analyzer. The orientations of the polarizer are switched between + 45° and −45°. The orientations of the analyzer were switched between 0° and 90°. (b) Four configurations for the polarizer and analyzer to measure four different optical fields, E1, E2, E3, and E4.
Fig. 2
Fig. 2 (a) Measured spatially resolved Jones matrix of the LC droplet. Brightness and color present a modulus (in arbitrary unit) and a phase (in radian) of a complex value, respectively. (b) Polarization-dependent optical fields in the scattering plane. (c) Variation of light scattering intensity with the scattering angle θ at four representative scattering planes with φ = 0°, 45°, 90°, and 135°, respectively. Azimuthal angle φ is defined to be zero at the positive x(u)-axis as depicted in (b).
Fig. 3
Fig. 3 Measured Jones matrix and scattered field of a silver NW. (a) Spatially resolved Jones matrix of the vertically aligned silver NW. Brightness and color present a modulus (in arbitrary unit) and a phase (in radian) of a complex value, respectively. (b) Amplitudes of the light scattering fields obtained using the pFTLS method. (c) Variation of light scattering intensity profiles with the scattering angle θ at the perpendicular (φ = 0°) and parallel (φ = 90°) scattering planes to the NW.
Fig. 4
Fig. 4 Normalized light scattering intensity from the vertically aligned NW shown in Fig. 3 at the direction of θ = 30° and φ = 0°. The maximum scattering intensity occurs when the incident polarization is parallel to the long axis of the NW. The red and blue solid lines represent the intensity of the horizontally (IH) and vertically (IV) polarized scattered light, respectively. The dashed line represents the sum of intensity for both polarizations (ITotal).
Fig. 5
Fig. 5 Spectroscopic pFTLS signals of the NWs. (a) Measured spectro-angular light scattering intensity averaged from four NWs. (b) Numerically calculated results using the FDTD method. (c) Comparison between the experimental and numerical results at five representative wavelengths denoted by dashed lines in (a) and (b). The solid and dashed lines represent the experiments and simulations, respectively. The shaded areas indicate the standard deviations of the experiment results from four NWs.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( u , v ) n m λ E ( x , y ) exp [ 2 π i ( u x + v y ) ] d x d y ,
[ J H H ( x , y ) J H V ( x , y ) J V H ( x , y ) J V V ( x , y ) ] = 1 2 [ E 1 ( x , y ) + E 3 ( x , y ) E 1 ( x , y ) E 3 ( x , y ) E 2 ( x , y ) + E 4 ( x , y ) E 2 ( x , y ) E 4 ( x , y ) ] .
[ E H ( x , y ) E V ( x , y ) ] = [ J H H ( x , y ) J H V ( x , y ) J V H ( x , y ) J V V ( x , y ) ] [ cos α sin α ] ,
[ E ˜ H ( u , v ) E ˜ V ( u , v ) ] n m λ J ˜ [ cos α sin α ] = n m λ [ J ˜ H H ( u , v ) J ˜ H V ( u , v ) J ˜ V H ( u , v ) J ˜ V V ( u , v ) ] [ cos α sin α ] ,
I T o t a l = I H + I V = | J ˜ H H cos α + J ˜ H V sin α | 2 + | J ˜ V H cos α + J ˜ V V sin α | 2 ,
M = E × n ^
J = n ^ × H ,
J t E f f d x d y d z = J E t d x d y d z ,
E f f θ J = 1 I θ d θ ( E t x θ I x d x + E t y θ I y d y + E t z θ I z d z )
E f f φ J = 1 I φ d φ ( E t x φ I x d x + E t y φ I y d y + E t z φ I z d z )
E f f θ M = 1 I θ d θ ( H t x θ K x d x + H t y θ K y d y + H t z θ K z d z )
E f f φ M = 1 I φ d φ ( H t x φ K x d x + H t y φ K y d y + H t z φ K z d z ) ,

Metrics