Abstract

A two-dimensional (2D) pure polarization pattern via four-beam polarization interferometry of circularly polarized beams is demonstrated both theoretically and experimentally. The polarization orientation of the interference pattern is recorded by an azobenzene photoalignment layer and transferred to liquid crystal (LC), enabling the fabrication of a 2D liquid crystal (LC) chiral structure. This structure behaves as a 2D LC polarization grating (LCPG) that can generate multiple polarization-selective diffraction beams of orthogonal polarization states with high efficiency. This 2D LCPG provides an effective way to distribute an optical signal into multiple receivers by both incidence polarization control and external electric field, therefore offering potential applications on multi-channel optical communication and information processing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

28 March 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Two-dimensional liquid crystal polarization grating via linearly polarized light modified multi-beam polarization interferometry

Yue Shi, Yingming Lai, Yan Jun Liu, Vladimir G. Chigrinov, Hoi-Sing Kwok, Minggang Hu, Dan Luo, and Xiao Wei Sun
Opt. Express 27(9) 13061-13071 (2019)

Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography

C. Provenzano, P. Pagliusi, and G. Cipparrone
Opt. Express 15(9) 5872-5878 (2007)

Diffraction properties of liquid crystal cell with beat structure formed by photoalignment substrates

Ryusei Momosaki, Kotaro Kawai, Moritsugu Sakamoto, Kohei Noda, Tomoyuki Sasaki, Nobuhiro Kawatsuki, and Hiroshi Ono
Appl. Opt. 58(12) 3229-3237 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
    [Crossref]
  2. S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
    [Crossref]
  3. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001).
    [Crossref] [PubMed]
  4. J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
    [Crossref] [PubMed]
  5. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
    [Crossref]
  6. T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
    [Crossref]
  7. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
    [Crossref] [PubMed]
  8. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25(11), 785–786 (2000).
    [Crossref] [PubMed]
  9. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
    [Crossref]
  10. M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
    [Crossref]
  11. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
    [Crossref]
  12. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [Crossref]
  13. V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
    [Crossref] [PubMed]
  14. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  15. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref] [PubMed]
  16. M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
    [Crossref]
  17. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
    [Crossref] [PubMed]
  18. K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
    [Crossref]
  19. H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photocross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
    [Crossref]
  20. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31(22), 3336–3338 (2006).
    [Crossref] [PubMed]
  21. U. Ruiz, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Pure two-dimensional polarization patterns for holographic recording,” Opt. Lett. 37(3), 311–313 (2012).
    [Crossref] [PubMed]
  22. U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
    [Crossref]
  23. V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
    [Crossref]
  24. Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
    [Crossref] [PubMed]
  25. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
    [Crossref]
  26. D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
    [Crossref]
  27. Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
    [Crossref]
  28. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Uni. Press, 1999).
  29. J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
    [Crossref]
  30. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).
  31. L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
    [Crossref]
  32. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  33. H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
    [Crossref] [PubMed]
  34. F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
    [Crossref]
  35. S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
    [Crossref]
  36. Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95(3), 030505 (2005).
    [Crossref] [PubMed]
  37. R. L. Van Renesse, Optical Document Security (Artech House, 1994).
  38. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley Publishing, 2008).

2017 (3)

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

2012 (5)

2011 (1)

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[Crossref]

2009 (1)

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

2007 (1)

2006 (5)

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photocross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31(22), 3336–3338 (2006).
[Crossref] [PubMed]

2005 (3)

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95(3), 030505 (2005).
[Crossref] [PubMed]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

2004 (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

2003 (1)

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

2002 (2)

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

2001 (1)

2000 (1)

1999 (1)

1996 (1)

S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
[Crossref]

1995 (2)

T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

1991 (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

1988 (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

1986 (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Aastuen, D.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

Adachi, J.

An, Z.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Asatryan, K.

Beige, A.

Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95(3), 030505 (2005).
[Crossref] [PubMed]

Bruzzone, C.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Che, Z.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Chigrinov, V.

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Chigrinov, V. G.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
[Crossref] [PubMed]

Cid, R.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

Cipparrone, G.

Cloutier, S. G.

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31(22), 3336–3338 (2006).
[Crossref] [PubMed]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Dai, H. T.

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Davis, J. A.

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Eckhardt, S.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

Emoto, A.

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photocross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

Escuti, M. J.

Fan, F.

Fernández-Pousa, C. R.

Galstian, T.

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Gori, F.

Gorkhali, S. P.

Gunther, J.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

Han, H.

Hasegawa, M.

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

Ho, J.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Ho, J. Y.

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

Ho, J. Y.-L.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Hosoki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Hu, M.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Huang, D. D.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Huang, T.

T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

Ichimura, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Ji, W.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Jones, W. M.

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

Kawai, K.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Kawatsuki, N.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photocross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

Kekas, D. J.

Khazimullin, M.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Kim, J.

Komanduri, R. K.

Kozenkov, V.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Kwek, L. C.

Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95(3), 030505 (2005).
[Crossref] [PubMed]

Kwok, H. S.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Kwok, H.-S.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Lawler, K. F.

Li, J.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Lim, M.

Lim, Y. L.

Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95(3), 030505 (2005).
[Crossref] [PubMed]

Liu, Y. J.

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Luo, D.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Ma, J.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

Mo, L.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Moreno, I.

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Noda, K.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Ono, H.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photocross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

Pagliusi, P.

Park, H.

Parrott, E. P. J.

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Pickwell-MacPherson, E.

Pikin, S.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Popovich, M. M.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

Presnyakov, V.

Provenzano, C.

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Ritums, D. L.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

Ruiz, U.

U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
[Crossref]

U. Ruiz, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Pure two-dimensional polarization patterns for holographic recording,” Opt. Lett. 37(3), 311–313 (2012).
[Crossref] [PubMed]

Sakamoto, M.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Sasaki, T.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Seki, T.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Shi, Y.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Shibaev, V. P.

U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
[Crossref]

Song, F.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Srivastava, A. K.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Stenholm, S.

S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
[Crossref]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Sun, X. W.

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Suzuki, Y.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Taira, Y.

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

Takada, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Takatsu, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Tan, L.

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

Tervo, J.

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Turunen, J.

Vashchenko, V. V.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Verevochnikov, A.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Wagner, K. H.

T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

Wu, S.-T.

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Yang, F.

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Yang, H. Z.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Yang, X.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Yeralan, S.

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

Zhang, L.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Zhao, C.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

J. Appl. Phys. (3)

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photocross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Mater. Chem. (1)

Y. J. Liu, H. T. Dai, and X. W. Sun, “Holographic fabrication of azo-dye-functionalized photonic structures,” J. Mater. Chem. 21(9), 2982–2986 (2011).
[Crossref]

J. Photopolym. Sci. Technol. (1)

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(7), 2155–2164 (1992).
[Crossref]

Langmuir (2)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Liq. Cryst. (1)

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Liquid Crystals Today (1)

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Nature (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Opt. Acta (Lond.) (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Opt. Commun. (1)

S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
[Crossref]

Opt. Eng. (1)

S. Yeralan, J. Gunther, D. L. Ritums, R. Cid, and M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41(41), 1774–1779 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A Gen. Phys. (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 061713 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. L. Lim, A. Beige, and L. C. Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95(3), 030505 (2005).
[Crossref] [PubMed]

Proc. SPIE (2)

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

SID Dig. (1)

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

Other (4)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Uni. Press, 1999).

R. L. Van Renesse, Optical Document Security (Artech House, 1994).

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley Publishing, 2008).

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic setup of the four-beam polarization interferometry. M: mirror; BS: beam splitter, P: polarizer. (b) Chemical structure of azobenzene photoalignment material SD1.
Fig. 2
Fig. 2 Interference of four symmetric CP beams with different polarization configurations. (a) Schematic diagrams of the four-beam arrangement. (b) Simulated intensity distribution of the interference pattern. (c) Experimental intensity distribution. (d) Simulated polarization distribution of the interference field. Different colors indicate different polarization states. Blue: left-handed polarization; Red: right-handed polarization; Black: linear polarization.
Fig. 3
Fig. 3 2D LC chiral texture observed under POM (case 2). (a) Simulated LC texture. (b) LC texture realized experimentally. (c) Simulated LC texture with director configuration (green short lines) in one period.
Fig. 4
Fig. 4 Diffraction of the 2D LCPG with different LC phase retardation based on simulation (case 2). (a)-(c) Diffraction intensity distribution. The 0th, 1st and 2nd orders are marked respectively in (c). (d) Diffraction efficiencies of the 0th, 1st and 2nd orders from both simulation and experiments.
Fig. 5
Fig. 5 Polarization investigation of the 2D LCPG diffraction (case 2). (a)-(c) Simulated diffraction intensity with different polarization incidence at half-wave condition. (d) and (e) The simulated phase δdiff of the main 1st order beams. Inset: normalized δdiff of diffractions from CP and LP light. (f)-(h) Experimental diffraction with different polarization incidence on the 2D LCPG (d ~1.3 μm). The diffraction efficiencies are measured and marked in the figure. (i) Polarization measurements (normalized intensity vs. polarizer angle) of the 1st order of LP (open symbols) and CP incidence (closed symbols) respectively from experiments. (j) Schematic illustration of the 2D LCPG diffraction with different incident polarization.
Fig. 6
Fig. 6 Diffraction of the 2D LCPG as a function of applied electric field (f = 1kHz). (a) Diffraction efficiencies of the 0th and 1st order as a function of applied electric field. (b) and (c) Diffraction patterns at different voltages respectively. A uniformly aligned nematic LC cell is used as 100% efficiency reference. All given voltages are peak to peak values.

Tables (1)

Tables Icon

Table 1 Comparison of Four Symmetric CP Beam Interference with Different Polarization Configurations a

Metrics