Abstract

We show in an experiment a covert transmission of QPSK and 64-QAM over up to 100km of SSMF, digitally encrypted with spectral phase mask, buried under ASE noise with negative −15 dB/0.1nm OSNR. We record a post-FEC error free BER for a stealthy channel, at 16 Gbps on a single polarization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic-layer encryption and steganography over IM/DD communication system

Eyal Wohlgemuth, Yaron Yoffe, Tomer Yeminy, Zeev Zalevsky, and Dan Sadot
Opt. Express 26(25) 32691-32703 (2018)

Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km

Masato Yoshida, Toshihiko Hirooka, Keisuke Kasai, and Masataka Nakazawa
Opt. Express 24(1) 652-661 (2016)

Linewidth-tolerant and multi-format carrier phase estimation schemes for coherent optical m-QAM flexible transmission systems

Tao Yang, Chen Shi, Xue Chen, Min Zhang, Yuefeng Ji, Feng Hua, and Yufei Chen
Opt. Express 26(8) 10599-10615 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).
  2. B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).
  3. H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
    [Crossref]
  4. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  5. B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
    [Crossref] [PubMed]
  6. T. Yeminy, D. Sadot, and Z. Zalevsky, “Spectral and temporal stealthy fiber-optic communication using sampling and phase encoding,” Opt. Express 19(21), 20182–20198 (2011).
    [Crossref] [PubMed]
  7. T. Yeminy, D. Sadot, and Z. Zalevsky, “Sampling impairments influence over fiber-optic signal decryption,” Opt. Commun. 291(15), 193–201 (2013).
    [Crossref]
  8. E. Wohlgemuth, T. Yeminy, D. Sadot, and Z. Zalevsky, “Experimental demonstration of encryption and steganography in optical fiber communications,” in Proceedings of European Conference of Optical Communications (ECOC, 2017).
  9. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  10. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [Crossref]

2015 (1)

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

2014 (2)

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

2013 (2)

T. Yeminy, D. Sadot, and Z. Zalevsky, “Sampling impairments influence over fiber-optic signal decryption,” Opt. Commun. 291(15), 193–201 (2013).
[Crossref]

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Buhl, L. L.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Curty, M.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Doerr, C. R.

Essiambre, R. J.

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Fok, M. P.

Foschini, G. J.

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gnauck, A. H.

Goebel, B.

Jiang, C.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

Kanoff, D. R.

Kramer, G.

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Lo, H. K.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Magarini, M.

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Mittal, P.

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Prucnal, P. R.

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

Ren, Y.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

Sadot, D.

T. Yeminy, D. Sadot, and Z. Zalevsky, “Sampling impairments influence over fiber-optic signal decryption,” Opt. Commun. 291(15), 193–201 (2013).
[Crossref]

T. Yeminy, D. Sadot, and Z. Zalevsky, “Spectral and temporal stealthy fiber-optic communication using sampling and phase encoding,” Opt. Express 19(21), 20182–20198 (2011).
[Crossref] [PubMed]

E. Wohlgemuth, T. Yeminy, D. Sadot, and Z. Zalevsky, “Experimental demonstration of encryption and steganography in optical fiber communications,” in Proceedings of European Conference of Optical Communications (ECOC, 2017).

Shastri, B. J.

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tait, A. N.

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

Tamaki, K.

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Tian, Y.

Wang, J.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

Wang, Z.

Winzer, P. J.

Wohlgemuth, E.

E. Wohlgemuth, T. Yeminy, D. Sadot, and Z. Zalevsky, “Experimental demonstration of encryption and steganography in optical fiber communications,” in Proceedings of European Conference of Optical Communications (ECOC, 2017).

Wu, B.

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21(2), 2065–2071 (2013).
[Crossref] [PubMed]

Xu, L.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

Yeminy, T.

T. Yeminy, D. Sadot, and Z. Zalevsky, “Sampling impairments influence over fiber-optic signal decryption,” Opt. Commun. 291(15), 193–201 (2013).
[Crossref]

T. Yeminy, D. Sadot, and Z. Zalevsky, “Spectral and temporal stealthy fiber-optic communication using sampling and phase encoding,” Opt. Express 19(21), 20182–20198 (2011).
[Crossref] [PubMed]

E. Wohlgemuth, T. Yeminy, D. Sadot, and Z. Zalevsky, “Experimental demonstration of encryption and steganography in optical fiber communications,” in Proceedings of European Conference of Optical Communications (ECOC, 2017).

Yuan, J.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

Zalevsky, Z.

T. Yeminy, D. Sadot, and Z. Zalevsky, “Sampling impairments influence over fiber-optic signal decryption,” Opt. Commun. 291(15), 193–201 (2013).
[Crossref]

T. Yeminy, D. Sadot, and Z. Zalevsky, “Spectral and temporal stealthy fiber-optic communication using sampling and phase encoding,” Opt. Express 19(21), 20182–20198 (2011).
[Crossref] [PubMed]

E. Wohlgemuth, T. Yeminy, D. Sadot, and Z. Zalevsky, “Experimental demonstration of encryption and steganography in optical fiber communications,” in Proceedings of European Conference of Optical Communications (ECOC, 2017).

IEEE Access (1)

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information Security in Big Data: Privacy and Data Mining,” IEEE Access 28(4), 1149–1176 (2014).

IEEE J-STSP (1)

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J-STSP 9(7), 1185–1194 (2015).

J. Lightwave Technol. (2)

Nat. Photonics (1)

H. K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

T. Yeminy, D. Sadot, and Z. Zalevsky, “Sampling impairments influence over fiber-optic signal decryption,” Opt. Commun. 291(15), 193–201 (2013).
[Crossref]

Opt. Express (2)

Other (1)

E. Wohlgemuth, T. Yeminy, D. Sadot, and Z. Zalevsky, “Experimental demonstration of encryption and steganography in optical fiber communications,” in Proceedings of European Conference of Optical Communications (ECOC, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a): Spectral representation of a digital upsampling operator ( L ) for L=16, each replica delimited with vertical dashed line and labeled with the index l. Secondary (blue) x-axis represents the assigned frequency after the signal being transmitted with 64 Gsamp DAC. (b): Temporal representation of QPSK symbol, before (blue) and after (red) encryption with SPM.
Fig. 2
Fig. 2 Experimental setup for encrypted and stealthy coherent optical system. The following abbreviation were used: ECL – external cavity laser; SSMF – standard single mode fiber; VOA – variable optical attenuator; PC – polarization controller; BPF – (optical) bandpass filter; EDFA – Erbium-doped fiber amplifier; PM – polarization maintaining; DP-MZM – dual parallel Mach-Zehnder modulator; ICR – integrated coherent receiver.
Fig. 3
Fig. 3 (a): Spectral measurement of an encrypted stealthy channel with OSNR of −15 dB, inset show a 200 GHz zoom around the stealthy channel. (b): Bit error rate measurements received for a B2B QPSK transmission, at different SNR values.
Fig. 4
Fig. 4 (a): Processing gain (P.G.) at different OSNR values. Right – Constellation diagram (b.1) and eye diagram (b.2) as received by the eavesdropper with arbitrary phase mask, at OSNR of −15 dB/0.1nm. The authorized user performance at (b.3), (b.4) at BER of 1e-3.
Fig. 5
Fig. 5 Constellation diagrams taken after 100km transmission, with varying OSNR values of (a) 28, (b) 15 and (c) 5dB/0.1nm.

Tables (1)

Tables Icon

Table 1 Experimental setup hardware parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S tx [ k ]=( l=0 L1 S[kl N ˜ ] )· H RRC [k]·Ψ[ k ],
Ψ[k]= e jϕ[k] ; {ϕ[k]} k=0 N1 U(0,2π).
s rx raw [n]= e j( ω IF ·n+φ[n]) · s tx [n]* h rx [n]* h CD [n]+ z ˜ [n],
S rx samp [k]= 1 L m=0 L1 l=0 L1 { S[k1 N ˜ +m N ˜ ] | H ¯ RRC [k+m N ˜ | 2 } , + 1 L m=0 L1 { Z ˜ [km N ˜ ]| H ¯ RRC [k+m N ˜ | }
SN R Authorized,analog = 1 N k=0 N1 { [ E | S rx,sig [k] | 2 ] E[ | S rx,n [k] | 2 ] } = a 2 σ 2 ,
SN R Authorized = 1 N ˜ k=0 N ˜ 1 { [ E | S rx,sig samp [k] | 2 ] E[ | rx,n samp [k] | 2 ] } = L 2 a 2 σ 2 ,
Processing Gain= SN R Authorized SN R Authorized,analog = L 2 .
P b Authorized = 1 2 erfc( L 2 a 2σ ).
R b = log 2 (M) R DAC L ,
SN R Authorized,analog [dB] =OSNR[ [dB] 0.1nm ]10 lo g 10 { B W sig [GHz] 12.5 [GHz] }+PE R [dB] ,

Metrics